Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Размерность и базис линейного уравнения. Изоморфизм линейных пространств

Читайте также:
  1. Q]3:1: Общие уравнения прямой в пространстве
  2. А64. Пространственную модель молекулы ДНК создали
  3. Адресация узлов сети. Плоское адресное пространство. Иерархическое адресное пространство
  4. Аудио-визуальная и тактильная организация пространства
  5. Базисні умови поставок
  6. Бесконечное пространство и лоскутное одеяло
  7. В зависимости от базы сравнения индексы могут быть как цепные так и базисные.

Понятия размерности и базиса векторного пространства напрямую связаны с понятием линейно независимой системы векторов, так что рекомендуем при необходимости обращаться к статьелинейная зависимость системы векторов, свойства линейной зависимости и независимости.

Определение.

Размерностью векторного пространства называется число, равное максимальному количеству линейно независимых векторов в этом пространстве.

Определение.

Базис векторного пространства – это упорядоченная совокупность линейно независимых векторов этого пространства, число которых равно размерности пространства.

Приведем некоторые рассуждения, основываясь на этих определениях.

Рассмотрим пространство n -мерных векторов.

Покажем, что размерность этого пространства равна n.

Возьмем систему из n единичных векторов вида

Примем эти векторы в качестве строк матрицы А. В этом случае матрица А будет единичной матрицей размерности n на n. Ранг этой матрицы равен n (при необходимости смотрите статьюранг матрицы: определение, методы нахождения). Следовательно, система векторов линейно независима, причем к этой системе нельзя добавить ни одного вектора, не нарушив ее линейной независимости. Так как число векторов в системе равно n, то размерность пространства n -мерных векторов равна n, а единичные векторы являются базисом этого пространства.

Из последнего утверждения и определения базиса можно сделать вывод, что любая система n -мерных векторов, число векторов в которой меньше n, не является базисом.

Теперь переставим местами первый и второй вектор системы . Легко показать, что полученная система векторов также является базисом n -мерного векторного пространства. Составим матрицу, приняв ее строками векторы этой системы. Эта матрица может быть получена из единичной матрицы перестановкой местами первой и второй строк, следовательно, ее ранг будет равен n. Таким образом, система из n векторов линейно независима и является базисом n -мерного векторного пространства.

Если переставить местами другие векторы системы , то получим еще один базис.

Если взять линейно независимую систему не единичных векторов, то она также является базисом n -мерного векторного пространства.

Таким образом, векторное пространство размерности n имеет столько базисов, сколько существует линейно независимых систем из n n -мерных векторов.

Если говорить о двумерном векторном пространстве (то есть, о плоскости), то ее базисом являются два любых не коллинеарных вектора. Базисом трехмерного пространства являются три любых некомпланарных вектора.

Говорят, что между элементами двух множеств и установлено взаимно однозначное соответствие, если указано правило, которое каждому элементу сопоставляет один и только один элемент , при чем каждый элемент оказывается сопоставленным одному и только одному элементу . Взаимно однозначное соответствие будем обозначать , а соответствующие элементы: .

Два линейных пространства и называются изоморфными, если между их элементами можно установить такое взаимно однозначное соответствие, что выполняются условия:

1) сумме векторов пространства соответствует сумма соответствующих векторов пространства

2) произведению числа на вектор пространства соответствует про изведение того же числа на соответствующий вектор пространства

Другими словами, изоморфизм — это взаимно однозначное соответствие, сохраняющее линейные операции.

 

 


Дата добавления: 2015-08-09; просмотров: 93 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Линейное действительное пространство. Линейная зависимость и независимость| Ранг системы векторов линейного пространства

mybiblioteka.su - 2015-2024 год. (0.008 сек.)