Читайте также:
|
|
Выборочная совокупность будет полно и адекватно отражать свойства генеральной совокупности в том случае, если она будет репрезентативной (представительной). Репрезентативность выборки зависит от применяемых видов, методов и способов отбора единиц.
Достоверность результатов наблюдения достигается за счет соблюдения основного принципа выборочного наблюдения: обеспечение случайности отбора единиц (равная возможность единиц попасть в выборку)
В теории выборочного наблюдения разработаны различные виды, методы и способы отбора единиц из генеральной совокупности.
Различают два вида отбора единиц в выборочную совокупность: повторный и бесповторный.
При повторном отборе отобранная единица подвергается обследованию, возвращается в генеральную совокупность и снова может быть выбранной («схема возвратного шара»). В результате вероятность попадания отдельной единицы в выборку не меняется независимо от числа отобранных единиц. На практике такой отбор применяется, когда объем генеральной совокупности не известен и теоретически возможно повторение единиц с уже встречавшимися значениями регистрируемых признаков (например, в маркетинговых исследованиях). В социально-экономических исследованиях повторный отбор встречается редко.
При бесповторном отборе отобранная единица подвергается обследованию и в дальнейшей процедуре отбора не участвует («схема безвозвратного шара»). Тем самым, вероятность попасть в выборку для оставшихся единиц увеличивается с каждым шагом отбора. Такой вид отбора практически возможен, когда объем генеральной совокупности четко определен.
В ходе выборочного наблюдения могут применяться следующие способы отбора единиц из генеральной совокупности:
§ индивидуальный отбор - в выборку отбираются отдельные единицы совокупности;
§ групповой отбор - в выборку попадают качественно однородные группы или серии единиц;
§ комбинированный отбор – сочетание индивидуального и группового способов отбора.
Выборочная совокупность может быть сформирована с помощью следующих методов отбора единиц:
1. случайный (собственно-случайный);
2. механический;
3. типический (расслоенный, стратифицированный);
4. серийный (гнездовой);
5. комбинированный.
Приведем краткую характеристику этих методов отбора единиц.
Собственно-случайный (случайный) отбор – индивидуальный отбор единиц, каждой из которых присвоен порядковый номер, с помощью жеребьевки или таблицы случайных чисел. Генеральная совокупность предварительно не разделяется на какие-либо группы. Условием репрезентативности выборки служит принцип случайности (равная возможность каждой единицы попасть в выборку). Собственно-случайная выборка может осуществляться по схемам повторного и бесповторного обора (например, проведение тиражей денежно-вещевой лотереи).
Механический отбор – отбор из предварительно упорядоченной и разбитой на равные интервалы (группы) генеральной совокупности. Размер интервала равен обратной величине доли выборки. Например, при 5 % - ной выборке отбирается каждая 20-я единица (1/0,05), при 10 %-ной выборке - каждая 10-я единица (1/0,1) и т.д. В результате, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица. При этом отбор начинается не с первой единицы совокупности, а с середины первого интервала. Для обеспечения репрезентативности все единицы генеральной совокупности должны располагаться в определенном порядке. Механический отбор всегда бывает бесповторным. Он имеет преимущество перед случайным отбором, т.к. его легче организовать.
Типический отбор(расслоенный, стратифицированный) – неоднородная генеральная совокупность вначале разбивается на качественно однородные типические группы (не обязательно равные). Затем из каждой группы производится индивидуальный отбор случайным или механическим методом. Типическая выборка применяется при изучении сложных статистических совокупностей и дает более точные результаты по сравнению с другими методами отбора. В частности, случайная ошибка при типическом отборе меньше, чем при собственно-случайном и механическом отборе. Это объясняется тем, что имевшееся соотношение между группами единиц генеральной совокупности, сохраняется и в выборочной совокупности. Типический отбор бывает повторным и бесповторным.
Из каждой типической группы в выборочную совокупность можно отбирать определенное число единиц с помощью следующих разновидностей типического отбора:
1. пропорциональный типический отбор – число единиц выборки n пропорционально удельному весу каждой группы в генеральной совокупности:
где: - объем выборки из - ой типической группы;
- объем - ой типической группы в генеральной совокупности.
2. непропорциональный типический отбор - число единиц выборки непропорционально удельному весу каждой группы в генеральной совокупности:
,
где - число выделенных типических групп.
3. отбор с учетом вариации признака -число единиц выборки пропорционально удельному весу в генеральной совокупности с учетом вариации признака по группам:
- для средней , где - среднее квадратическое отклонение i – й группы;
- для доли
Серийный (гнездовой)отбор – это отбор, при котором в случайном порядке отбираются не отдельные единицы, а целые группы единиц (серии, гнезда), которые подвергаются сплошному наблюдению. Отбор отдельных серий осуществляется на основе случайного или механического метода. Серийный отбор применяется в том случае, если генеральная совокупность разбита на группы еще до начала выборочного наблюдения. На практике чаще применяется бесповторный отбор с равными сериями. Ошибка серийной выборки больше, чем при другом методе отбора. Но серийный отбор обладает организационными преимуществами, поэтому довольно часто применяется на практике. Серийную выборку применяют в двух случаях: 1) все серии имеют одинаковое количество единиц; 2) серии различны по объему. Серийный отбор обеспечивает экономию средств, если обследования распространяются на обширную территорию и гнездами являются территориальные единицы.
В рассмотренных выше методах осуществлялся одноступенчатый и многоступенчатый отбор единиц в выборочную совокупность.
При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайный и серийный отбор).
При многоступенчатой выборке применяется несколько стадий (ступеней) отбора. Производят отбор отдельных групп из генеральной совокупности, затем из групп выбираются отдельные единицы (механический отбор). При этом каждая стадия имеет свою единицу отбора. Число ступеней определяется числом типов единиц отбора. Например, на последней ступени единица отбора совпадает с единицей выборки. Ошибка всей выборки складывается из ошибок на отдельных ступенях отбора.
При построении многоступенчатой выборки используется комбинация разных методов отбора, поэтому такой метод отбора иногда называют комбинированной выборкой.
От многоступенчатого отбора следует отличать многофазный отбор. В отличие от многоступенчатого отбора, он предполагает сохранение одной и той же единицы отбора на всех этапах его проведения. При этом отобранные на каждой стадии единицы подвергаются обследованию по более широкой программе. Многофазная выборка используется для расширения программы обследования.
Особым видом выборочного наблюдения явления моментное наблюдение, т.е. выборочное наблюдение во времени. При этом все единицы изучаемой совокупности подлежат сплошному учету: объектами выборки служат отрезки времени. Поэтому понятия генеральной и выборочной совокупности относятся не к совокупности единиц, а ко времени наблюдения.
Дата добавления: 2015-08-13; просмотров: 109 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Понятие выборочного наблюдения | | | Ошибки выборки |