Читайте также:
|
|
1. Общие сведения
Прежде чем приступить к непосредственному обсуждению задачи о приближении, напомним некоторые определения.
Множество называется линейным нормированным пространством, если оно линейно и каждому элементу поставлено в соответствие вещественное число , которое называется нормой и удовлетворяет условиям:
a. , причем , только когда .
b. для любого числа .
c. .
Линейное нормированное пространство называется строго нормированным, если из равенства следует, что .
Рассмотрим следующую задачу. Пусть имеется некоторое линейное нормированное пространство , элемент и набор линейно- независимых элементов .
Требуется найти наилучшее приближение для некоторой линейной комбинацией , то есть, найти элемент
такой, что
.
Если такой элемент существует, то он называется элементом наилучшего приближения. Справедливы следующие теоремы.
Теорема 1. В любом нормированном пространстве существует элемент наилучшего приближения.
Д о к а з а т е л ь с т в о. ([2 ]). Рассмотрим функцию
. (39)
Так как
,
то функция является непрерывной функцией переменных при любых . Функция
,
непрерывная на замкнутом множестве :
, (40)
достигает своей нижней грани в некоторой точке .
Учитывая линейную независимость , приходим к выводу, что . Для любого ненулевого набора чисел справедлива оценка:
, где
.
Пусть . Функция непрерывна на множестве :
(41)
следовательно, в некоторой точке
достигает своей нижней грани . Очевидно, что
.
За пределами множества
.
Таким образом,
для любого набора чисел . Теорема доказана.
В произвольном нормированном пространстве элементов наилучшего приближения, вообще говоря, может быть несколько.
Теорема 2. В строго нормированном пространстве существует единственный элемент наилучшего приближения.
Д о к а з а т е л ь с т в о. Предположим, что существуют два элемента такие, что
. (42)
Так как
,
то
.
Учитывая, что пространство строго нормированно, получаем
.
Откуда, на основании (42), и . Получаем противоречие.
Задача нахождения элемента наилучшего приближения в произвольном нормированном пространстве является трудноразрешимой. В данном пособии мы ограничимся рассмотрением двух наиболее интересных пространств.
2. Наилучшее приближение в гильбертовом пространстве.
Напомним, что линейное пространство называется гильбертовым, если в нем введено скалярное произведение. Легко устанавливается, что гильбертово пространство с нормой является строго нормированным и, как следует из теорем 1, 2 в нем существует единственный элемент наилучшего приближения, задача нахождения которого, сводится к решению некоторой системы линейных уравнений.
Пусть система линейно независимых элементов гильбертова пространства и Требуется найти наилучшее приближение элемента по системе .
.
Рассмотрим функцию
. (43)
Из свойства скалярного произведения следует, что
.
Задача нахождения наименьшего значения функции приводит нас к системе уравнений
(44)
или в матричном виде
, (45)
где - матрица Грамма системы с элементами ,
.
Из курса линейной алгебры известно, что в случае линейной независимости системы , матрица Грамма невырождена. Следовательно, система (45) имеет единственное решение. Наиболее просто задача решается в случае ортонормированной системы , где
Замечание. Если систему уравнений (44) переписать в виде
,
то отсюда можно сделать вывод, что наилучшее приближение элемента по системе является ортогональной проекцией элемента на подпространство .
Рассмотрим некоторые примеры.
2.a. тригонометрический ряд Фурье.
Пусть в пространстве выбрана система функций :
.
Система ортогональная и наилучшим приближением для будет функция
,
где
,
,
т.е. - отрезок классического тригонометрического ряда Фурье.
2.b. метод наименьших квадратов.
Пусть в некоторых узлах заданы значения функции . Требуется приблизить функцию на всем отрезке линейной комбинацией по системе линейно независимых функций :
.
На практике значения получены в результате проведения некоторых экспериментов и, как правило, заданы с некоторой погрешностью, причем число . В такой ситуации требовать выполнения равенства вообще говоря не имеет смысла.
Поэтому поступают следующим образом: число функций
выбирают не очень большим (), и в каждой точке вычисляется отклонение
.
Рассмотрим функцию
,
и в качестве наилучшего приближения возьмем функцию
,
где коэффициенты выбираются из условия
.
Такой способ приближения получил название метод наименьших квадратов. Покажем, что указанный метод можно трактовать как нахождение элемента наилучшего приближения в некотором евклидовом пространстве.
Пусть - - мерное пространство числовых векторов
. Введем в скалярное произведение по формуле
.
Тогда приближение по методу наименьших квадратов можно трактовать как нахождение наилучшего приближения для вектора : по системе векторов , что приводит к поиску решения системы (45), где
.
2.c. решение систем линейных алгебраических уравнений с прямоугольной матрицей.
Рассматривается система линейных алгебраических уравнений
, (46)
- матрица , где число строк больше числа столбцов .
Такие системы, как правило, несовместны. Будем искать наилучшее приближение к вектору правых частей по системе векторов, которые являются столбцами матрицы .
. (47)
В результате коэффициенты в (47) находятся как решение системы уравнений (45), которая приобретает вид
. (48)
Найденное таким образом решение, называется псевдорешением системы уравнений (46).
3. Наилучшее равномерное приближение.
Если норма в линейном нормированном пространстве определена не через скалярное произведение, то задача нахождения элемента наилучшего приближения значительно усложняется и в общем случае становится практически неразрешимой. В нашем пособии мы рассмотрим лишь некоторый частный случай.
Пусть - пространство ограниченных вещественных функций, определенных на отрезке , с нормой
. (49)
Будем искать наилучшее приближение по системе многочленов
.
Согласно теореме 1, существует такой многочлен , что
(50)
для любых многочленов степени .
Многочлен называется многочленом наилучшего равномерного приближения (МНРП).
Конструктивных методов нахождения такого многочлена нет. Однако установлены необходимые и достаточные условия того, что многочлен является МНРП для непрерывной функции.
Теорема Чебышева. Для того, чтобы многочлен был многочленом наилучшего равномерного приближения непрерывной функции , необходимо и достаточно существование на по крайней мере точек таких, что
, (51)
одновременно для всех .
Точки , удовлетворяющие условиям теоремы, принято называть точками чебышевского альтернанса.
Доказательство этой теоремы выходит за рамки нашего пособия
Пространство не является строго нормированным, поэтому вопрос о единственности элемента наилучшего приближения остается открытым, однако справедлива следующая теорема.
Теорема единственности .Многочлен наилучшего равномерного приближения непрерывной функции единственный.
Д о к а з а т е л ь с т в о. Допустим, что существуют два многочлена степени наилучшего равномерного приближения:
.
Отсюда
.
Следовательно, многочлен также является многочленом наилучшего равномерного приближения. Пусть - соответствующие этому многочлену точки чебышевского альтернанса. Тогда
или
. (52)
Так как , то равенство (52) возможно лишь когда
,
т. е. два различных многочлена степени совпадают в точках. Получили противоречие.
Замечание.
В случае, когда функция не является непрерывной, теорема единственности, вообще говоря, неверна:
Например, для функции , многочленом наилучшего равномерного приближения среди многочленов степени не выше первой будет любой полином .
Рассмотрим задачу, нахождения МНРП степени для функции
на отрезке . Для этого нам понадобятся многочлены Чебышева.
Многочлены Чебышева , определяются соотношениями
.
Легко видеть, что старший член при есть . Можно доказать, что при . Вернемся к нашей задаче. Справедливо равенство
.
Тогда многочлен и есть МНРП для .
Действительно, так как
,
то точки
,
максимума модуля разности образуют чебышевский альтернанс на отрезке .
Упражнения для самостоятельного решения
1. Построить интерполяционный многочлен второй степени в форме Лагранжа для функции по ее значениям в точках . Вычислить его значение в точке , найти погрешность и сравнить ее с теоретической априорной оценкой.
2. Построить кубический сплайн для функции на отрезке с узлами Вычислить
3. Построить интерполяционный многочлен по значениям функции и ее производных
4. В пространстве алгебраических многочленов степени не выше первой построить наилучшее приближение к функции заданной таблично
5. С какой погрешностью можно найти , если известны точные значения ?
6. Для функции построить многочлен наилучшего равномерного приближения степени не выше второй на отрезке .
7. Функцию на приблизить многочленом первой степени в смысле
а) наилучшего равномерного приближения;
б) наилучшего приближения в .
Оценить погрешность .
8. Для функции построить многочлен наилучшего равномерного приближения первой степени на отрезке .
Дата добавления: 2015-08-05; просмотров: 874 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Определение. | | | Численное дифференцирование. |