Читайте также:
|
|
Разберите решения задач 20-22.
Задача 20. Найти область сходимости степенного ряда .
Решение:
Данный степенной ряд можно записать так:
Применяем признак Даламбера:
Ряд будет сходиться для тех значений х, для которых .
Определим сходимость на концах интервала. При х= –2/3 ряд примет вид:
Этот ряд является знакочередующимся; его общий член по абсолютному значению стремится к нулю при . По признаку Лейбница о сходимости знакочередующихся рядов заключаем, что этот ряд сходится. Следовательно, значение х = – 2/3 принадлежит области сходимости данного ряда.
Подставив х = 2/3, получим
Этот ряд расходится, так как каждый член этого ряда, начиная со второго, больше соответствующего члена гармонического ряда. Следовательно, значение х = 2/3 не принадлежит области сходимости данного ряда. Таким образом, – область сходимости исследуемого ряда.
Задача 21. Вычислить интеграл с точностью до 0,001.
Решение:
Предварительно представим подынтегральную функцию в виде степенного ряда. Используя известное разложение в степенной ряд Маклорена функции sinx, имеем:
, тогда
Мы получили знакочередующийся ряд, который удовлетворяет условиям теоремы Лейбница. Так как в полученном ряде четвертый член по абсолютному значению меньше 0,001, то ограничиваемся только первыми тремя членами.
Задача 22. Найти первые три (отличные от нуля) члена разложения в степенной ряд Маклорена функции у(х), являющейся частным решением дифференциального уравнения если у(0)=1.
Решение:
Положим, что у(х) является решением данного дифференциального уравнения при указанных начальных условиях. Если у(х) допускает разложение в ряд Маклорена, то имеем:
(1)
Свободный член разложения (1), то есть у(0), дан по условию. Чтобы найти значения нужно данное уравнение последовательно дифференцировать по переменной х и затем вычислять значения производных при х = 0.
Значение получаем, подставив начальное условие в дифференциальное уравнение
Подставив найденные значения производных при х = 0 в (1), получим разложение искомого частного решения заданного уравнения:
Ответ:
Дата добавления: 2015-08-05; просмотров: 53 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Тема 10. Дифференциальные уравнения второго порядка | | | ПРАКТИЧЕСКАЯ ЧАСТЬ |