Читайте также:
|
|
I. Движущие силы P д, или их моменты M д. Эти силы и моменты приложены к ведущим звеньям и приводят машины в действие. Их работа всегда имеет положительный знак, т. е. A д > 0. Это связано с тем, что движущие силы образуют острый угол с направлением движения звена, к которому они приложены. При решении задач кинетостатики двигателей эти силы задаются в виде индикаторных или силовых диаграмм. В технологических машинах они подлежат определению. Необходимо иметь в виду, что в таких машинах, как двигатели внутреннего сгорания, такт сжатия требует затрат энергии, и в этом такте работа движущих сил не производится, а выполняемая работа является работой сил сопротивления. Однако работа движущих сил в такте расширения (рабочего хода) существенно больше работы сопротивления в такте сжатия. Поэтому в течение каждого цикла имеется превышение работы движущих сил над работой сил сопротивления, что позволяет двигателю быть двигателем.
II. Силы полезного сопротивления P п.с., или их моменты M п.с. Эти силы и моменты приложены к ведомым звеньям, связанным с исполнительными органами машин, и поэтому являются силами и моментами производственных, или технологических сопротивлений. Их работа имеет отрицательный знак, т. е. A п.с. < 0, так как моменты направлены против угловых скоростей звеньев, а силы образуют с направлением скоростей движения тупые углы. При решении задач кинетостатики технологических машин эти силы задаются в виде механических характеристик, или силовых диаграмм. В некоторых технологических машинах, таких как поршневые компрессоры,в такте расширения сила давления сжатого газа выполняет положительную работу, и по этой причине относится к движущей силе. Однако затем в такте сжатия выполняемая силами сопротивления работа существенно больше положительной работы в такте расширения, поэтому поршневой компрессор и относится к технологическим машинам.
III. Силы вредного сопротивления. К этим силам относятся силы трения F тр (или моменты сил трения M тр), которые возникают во всех кинематических парах в связи с наличием в них относительного движения звеньев. Они направлены всегда против движения звена в кинематической паре, поэтому совершают отрицательную работу, т. е. A тр < 0. В некоторых случаях силы трения выполняют положительную роль, например в тормозах или транспортных машинах в точках соприкосновения колёс с дорогой (автомобиль) или с рельсом (локомотив).
К силам вредного сопротивления относятся также силы сопротивления среды, в которой функционирует техническое устройство. Это – силы сопротивления движению в воздушной среде и силы сопротивления движению в воде и других средах. Однако изучение этих сил выходит за рамки данного курса и здесь они не рассматриваются.
IV. Силы тяжести (или силы веса) G. Эти силы действуют в зоне притяжения Земли согласно закону всемирного тяготения и определяются произведением , где m – масса звена, кг; g – ускорение свободного падения, равное . Силы веса приложены в центре тяжести звена и направлены всегда к центру Земли, т. е. вертикально вниз. При движении звена вниз силы веса совершают положительную работу, при движении вверх – отрицательную работу. За цикл движения звена суммарная работа этих сил равна нулю.
V. Силы инерции , или их моменты . Эти силы возникают во всех случаях, когда имеет место неравномерное и/или непрямолинейное движение звена. Они направлены против соответствующих ускорений (линейного или углового). Работа сил инерции может быть как положительной, так и отрицательной, в зависимости от направления этих сил по отношению к скорости движения звена, однако сумма этих работ за цикл движения равна нулю.
VI. Силы реакций связей в кинематических парах (или просто реакции в кинематических парах) . Реакция в кинематической паре возникает в результате того, что под действием сил, приложенных к одному из звеньев пары, это звено стремится совершить движение в направлении действия сил, однако другое звено препятствует этому. Согласно одному из основных постулатов механики, любое действие вызывает равное и противоположно направленное противодействие, поэтому со стороны другого звена появляется реакция, противоположная направлению равнодействующей сил, приложенных к первому звену.
В первом приближении, т. е. при неучёте сил трения в кинематической паре, реакции направляются вдоль нормали в точке контакта элементов кинематической пары (рис. 4.1). На указанном рисунке изображены элементы звеньев 1 и 2, образующих кинематическую пару с контактом в точке A. Через эту точку проведена нормаль n - n к элементам кинематической пары, на которой располагаются реакции в точке A. Реакции обозначены, как отмечено выше, буквой с подстрочными индексами, состоящими из двух чисел, указывающими, со стороны какого звена действует реакция (первый индекс) на какое звено (второй индекс) данной пары. В данном случае – это реакция первого звена на второе, – это реакция второго звена на первое; естественно, что имеет место равенство .
Полезно помнить, что, несмотря на то, что эти реакции равны и противоположны, они не уравновешивают друг друга, так как каждая из них приложена к своему звену. Реакции уравновешиваются в случае, если кинематическая пара рассматривается в сборе.
Работа реакций в кинематической паре равна нулю, т. е. , так как в направлении их действия отсутствует движение.
Дата добавления: 2015-07-26; просмотров: 202 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Синтез рычажных механизмов | | | Задачи кинетостатики |