Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Гармонический осциллятор

Читайте также:
  1. Вопрос 4. Гармонический осциллятор.
  2. Гармонические колебания и их характеристики. Уравнение гармонический колебаний
  3. ГАРМОНИЧЕСКИЙ АНАЛИЗ
  4. Гармонический осциллятор.
  5. Гармонический ток в емкости
  6. Гармонический ток в сопротивлении

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Модель квантового гармонического осциллятора служит первым приближением для описания колебательного движения в молекулах. Для более точных расчетов (например, при больших амплитудах колебаний) могут быть использованы более точные модели потенциалов, например, потенциал Морзе.

Квантовый гармонический осциллятор — одна из немногих систем в квантовой механике, для которой может быть получено точное решение уравнения Шрёдингера.

Гамильтониан квантового осциллятора массы m, собственная частота которого ω, выглядит так:

В координатном представлении , . Задача об отыскании уровней энергии гармонического осциллятора сводится к нахождению таких чисел E при которых следующее дифференциальное уравнение в частных производных (уравнение Шрёдингера):

имеет решение в классе квадратично интегрируемых функций.

Условие того, что волновая функция должна спадать на бесконечности, дает, что решение может быть получено только для счетного набора значений энергии:

Итоговые решения имеют вид:

функции — полиномы Эрмита:

Данный спектр значений E заслуживает внимания по двум причинам: во-первых, уровни энергии дискретны и равноотстоящие (эквидистантны), то есть разница в энергии между двумя соседними уровнями постоянна и равна , во-вторых наименьшее значение энергии равно . Этот уровень называют основным, вакуумом, или уровнем нулевых колебаний.

 


Дата добавления: 2015-07-26; просмотров: 86 | Нарушение авторских прав


Читайте в этой же книге: Двухчастичные системы | Странность | Сохранение странности | Кварконии и тяжелые адроны | Цветные силы | Электрослабые взаимодействия | Уравнение Дирака |
<== предыдущая страница | следующая страница ==>
Атом водорода.| Изоспин

mybiblioteka.su - 2015-2025 год. (0.007 сек.)