Читайте также:
|
1. Написать уравнение гармонического колебательного движения с амплитудой в 0,1 м, периодом 4 с и начальной фазой, равной p/2. Найти максимальную скорость колеблющейся точки и максимальное ускорение.
Ответ:
; vmax= 0,157 м/с;
аmax = 0,25м /с2.
2. Материальная точка совершает гармонические колебания с амплитудой А = 4 см и периодом Т = 2 с. Написать уравнение движения точки, если ее движение начинается из положения x0 = 2 см.
Ответ:
м.
3. Написать уравнение гармонического колебательного движения, если максимальное ускорение точки 0,493 м/с2, период колебаний 2 с и смещение точки от положения равновесия в начальный момент времени 0,025 м.
Ответ,
м.
4. Точка совершает гармонические колебания. Период колебания Т = 2 с, амплитуда А = 5 см, начальная фаза равна нулю. Найти скорость точки в момент времени, когда ее смещение от положения равновесия равно 2,5 см.
Ответ: v = 0,136 м/с.
5. Через сколько времени от начала движения точка, совершающая гармоническое колебание, сместится от положения равновесия на половину амплитуды? Период колебаний Т = 24 с, начальная фаза равна нулю.
Ответ: t = 2 с.
6. Начальная фаза гармонического колебания равна нулю. Через какую долю периода скорость точки будет равна половине ее максимальной скорости?
Ответ:
.
7. Груз, свободно колеблющийся на пружине, за время t = 0,01с сместился c расстояния 0,5 см от положения равновесия до наибольшего, равного 1 см. Каков период его колебаний?
Ответ: Т = 0,06 с.
8. Найти зависимость ускорения гармонического колебания материальной точки от скорости.
Ответ:
.
9. Найти зависимость скорости гармонического колебания материальной точки от смещения.
Ответ:
.
10. Найти круговую частоту и амплитуду гармонических колебаний частицы, если на расстоянии x1 и x2 от положения равновесия ее скорость равна соответственно v1 и v2.
Ответ:
; 
11. Складываются два гармонических колебания одного направления с одинаковыми периодами Т = 1,5 с и амплитудами А = 2 см. Начальные фазы колебаний
и
. Построить векторную диаграмму сложения амплитуд. Определить амплитуду и начальную фазу результирующего колебания. Записать уравнение результирующего колебания.
Ответ: А = 3,86см j = 0,41 p рад.
12. Материальная точка участвует сразу в двух колебаниях, происходящих по одной прямой и выражаемых уравнениями
см и
cм. Найти амплитуду А результирующего колебания, его частоту
и начальную фазу
. Написать уравнение движения.
Ответ: А = 2,24 см;
= 0,159 Гц; j = 0,353p рад.
13. Определить амплитуду и начальную фазу результирующего колебания, возникающего при сложении двух колебаний одного направления
и
где А1 = А2 = 1 см;
с-1; t = 0,5с. Построить векторную диаграмму сложения амплитуд. Найти уравнение результирующего колебания.
Ответ: А = 1.41 см; j=p/4 рад.
14.Частица одновременно совершает два гармонических колебания, происходящих во взаимно перпендикулярных направлениях и выражаемых уравнениями:
и
где А1 = 0,5 см; А2 = 2 см. Найти уравнение траектории точки и построить ее, указав направление движения.
Ответ: 
15. Складываются два взаимно перпендикулярных колебания, выражаемых уравнениями
и
где А1 = 2 см, А2 = 1 см;
с-1; t = 0,5с. Найти уравнение траектории и построить ее, показав направление движения точки.
Ответ: у = -0,5х.
16. Точка совершает одновременно два гармонических колебания, происходящих по взаимно перпендикулярным направлениям и выражаемых уравнениями
и
. Найти уравнение траектории и построить график ее движения.
Ответ: у = -2х.
17. Движение точки задано уравнениями
и
где А1 = 10 см; А2 = 5 см;
2с-1; t = p/4 с. Найти уравнение траектории и скорость точки в момент t = 0,5 с.
Ответ:

18. Тело совершает гармонические колебания по закону
. Определите период Т и начальную фазу j0 колебаний по данным таблицы 1.1. Постройте векторную диаграмму для момента времени t=0 и графики изменений координаты, скорости и ускорения от времени: x(t), vx(t), ax(t).
Таблица 1.1.
| № вар. | А, см | Значения при t=0 | № вар. | А, см | Значения при t=0 | ||||
| x(0) | vx(0) | ax(0) | ax(0) | vx(0) | ax(0) | ||||
| -0,42 | -6,36 | 2,83 | >0 | -2,83 | |||||
| 3,46 | 0,20 | 2,00 | -0,35 | ||||||
| -2,83 | <0 | 11,32 | 0,00 | 0,60 | |||||
| -0,60 | 0,00 | -3,46 | >0 | 13,84 | |||||
| -2,00 | 0,52 | 2,50 | 8,66 | ||||||
| -0,25 | 4,33 | 4,33 | 2,50 | ||||||
| 5,00 | -5,0 | -4,00 | -,00 | ||||||
| 0,00 | 16,00 | 0,40 | 0,00 | ||||||
| 4,24 | -0,85 | 0,00 | -13,5 | ||||||
| -3,46 | -0,30 | 0,52 | -3,00 |
19. По данным таблицы 1.2 найдите амплитуду и начальную фазу результирующих колебаний, возникающих при сложении двух колебаний одного направления
и
Постройте векторную диаграмму.
Таблица 1.2.
| № вар. | А1, см | j01 | А2, см | j02 | № вар. | А1, см | j01 | А2, см | j02 |
| p/4 | 2p/3 | -2p/3 | p/4 | ||||||
| 5p/6 | -p/4 | -p/4 | p/2 | ||||||
| p/2 | -5p/6 | p/3 | |||||||
| -5p/6 | -p/4 | 2p/3 | -2p/3 | ||||||
| p/4 | p | -3p/4 | p/6 | ||||||
| -p/3 | p/4 | -p/4 | |||||||
| -p/4 | p/6 | p | p/3 | ||||||
| p | 2p/3 | p/2 | 5p/6 | ||||||
| -3p/4 | -p/3 | -2p/3 | p/2 | ||||||
| 3p/4 | p/3 | 3p/4 |
20. По данным таблицы 1.3. найдите уравнение траектории движения точки, участвующей в двух взаимно перпендикулярных колебаниях, постройте ее и укажите направление движения. Допускается выполнение задания на компьютере с использованием математических программных систем.
Таблица 1.3.
Дата добавления: 2015-07-18; просмотров: 398 | Нарушение авторских прав
| <== предыдущая страница | | | следующая страница ==> |
| Примеры решения задач | | | Примеры решения задач |