Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Понятие о метеорологических рядах.

Читайте также:
  1. DПонятиеdиdзначение государственных гарантий на гражданской службе
  2. DПонятиеdиdзначениеdгосударственныхdгарантийdнаdгражданскойdслужбе
  3. I. Понятие кредитного договора. Принципы кредитования.
  4. I. Понятие, предмет, система исполнительного производства
  5. V 1 Тема 1 Понятие и юридическая природа налоговой ответственности
  6. А) понятие тенденциозности
  7. А. Понятие договора коммерческой концессии

Метеорологические ряды.

Основные климатические показатели

 

 

Методические указания

Лабораторная работа по климатологии

 

Томск à 2011

 


Понятие о метеорологических рядах. Виды климатических показателей и характеристики их статистической изменчивости.

Лабораторная работа 1

Цель работы: Изучить виды метеорологических (климатологических) рядов и основные климатические показатели.

Понятие о метеорологических рядах.

За продолжительное время на станциях накапливается материал метеорологических наблюдений, который служит основой для составления метеорологических рядов. Метеорологический ряд - статистическая совокупность числовых значений метеорологических величин или характеристик атмосферного явления. Статистическая совокупность может быть представлена:

1. В виде простого статистического ряда (простая статистическая совокупность).

2. В виде статистического распределения (группированный ряд).

3. В виде ранжированного ряда.

В первом случае значения хi величиных, наблюдавшиеся в момент времени tj, обычно располагаются в хронологической последовательности (хронологический ряд). Примером хронологического ряда служат различного рода таблицы последовательных записей результатов метеорологических наблюдений (например, таблицы месячной отчетности). Метеорологический ряд, представленный в виде хронологической последовательности, имеет важное значение, так как только по хронологическому ряду возможно рассчитать различные характеристики динамики ряда (например, изменения и колебания климата), изучить закономерности изменения случайной величины во времени - от года к году, от одного десятилетия к другому десятилетию и т.д.

 

Одним из видов обобщения результатов многолетних наблюдений является представление метеорологического ряда в виде статистического распределения. Он состоит в группировке числовых значений метеорологических величин по определенным градациям (интервалам). Статистическое распределение записываются в виде таблицы, входами в которую являются интервалы (или середины интервалов) и численности, выражающие частоту значении данного элемента, входящих в каждый интервал:

Середина интервала.......... xj x1 x2 x3 xk

Абсолютная частота......... mj m1 m2 m mk

Относительная частота...... pj p1 p2 p3 pk

Численностями интервалов служат абсолютная (mj) и относительная (pj) частоты интервалов.

Абсолютная частота интервалов - это число случаев попадания значений метеорологических величин в тот или иной интервал.

где N - объем статистической совокупности (число наблюдений).

Относительная частота интервала выражается отношением числа случаев со значениями элемента, входящими в данный интервал, к общему числу наблюдений:

Метеорологический ряд в виде статистического распределения представляет обобщение результатов наблюдении и позволяет получить верное представление об основных закономерностях многолетнего режима метеорологических величин: о наиболее часто встречающихся значениях элемента и диапазоне его изменении.

При представлении группированного ряда важно выбрать размер градации. Однозначных рекомендаций по этому вопросу нет в литературе. Однако имеются некоторые эмпирические правила определения ширины интервала.

При выборе числовых градаций рекомендуется основываться на следующих положениях: 1) при группировке необходимо руководствоваться генетическими соображениями, объемом выборки и изменчивостью элемента; 2) градации не должны перекрываться; 3) не должны группироваться вблизи одной границы распределения; 4) при затруднении выбора числа градаций на основе генетических соображений необходимо использовать числовые оценки.

Одним из наиболее простых способов определения числа градаций является выражение:

где k - число градаций, N - объем обрабатываемой информации, lgN -десятичный логарифм N.

Установлено примерно следующее максимально возможное число градаций в зависимости от числа наблюдений:

число наблюдений (N)        
число градаций (k)        

Из всего объема совокупности выбирают наименьшее значение хmin.- и наибольшее значение хmax величины и определяют размер градации:

где i - размер градации.

С учетом асимметричности распределений при наличии известного среднеквадратического отклонения (σ) группировку рекомендуется проводить следующим образом.

1. По среднеквадратическим отклонениям с границами градаций:

2. То же по 0,5 < σ - всего 14 градаций.

При использовании пакета MS Excel для построения сгруппированного ряда можно воспользоваться меню Сервис – Анализ данных – Гистограмма.

 

В специальных целях может быть принята и другая последовательность результатов наблюдений. Метеорологический ряд представляется в порядке возрастания (или убывания) числовых значений членов ряда - ранжированный ряд.

 

По ранжированному ряду можно вычислить (определить) интегральную вероятность (накопленную - кумулятивную повторяемость):

где m - порядковый номер члена ряда, n - объем совокупности.

Для ранжированного ряда в качестве средней величины находится медиана.

Медианой называется значение, стоящее в центре ранжированного ряда, т.е. расположенного в порядке убывания или возрастания значений х i. При этом число единиц совокупности с большим или меньшим, чем медиана, значением ряда одинаково.

Если всем единицам ряда придать порядковые номера, то номер медианы в ряду с нечетным числом "n" определяется как (n+1)/2. Например, в ряду из 81 члена номер медианы (81+1)/2=41, т.е. медианой является значение, стоящее в ряду под номером 41.

Если число членов в ряду четное, то медиану определяют как среднюю из двух центральных значений ранжированного ряда, порядковые номера которых n/2 и (n/2+l).

Так, если в ряду 80 значений, то центральными будут ранжированные значения с порядковыми номерами 80/2=40 и (80/2+1)=41.

Медиану рекомендуется определять в дополнение к средней арифметической при асимметричных распределениях. Медиана может быть определена графическим путем. По интегральной кривой распределения медиана (Me) определяется как 50% квантиль (значение метеорологической величины, накопленная вероятность которой p=0,5)

Ряды, подлежащие климатологической. обработке, могут быть составлены из средних суточных, экстремальных величин, средних месячных значений метеовеличин за отдельные годы, из средних широтных за отдельные месяцы и т.д.


Дата добавления: 2015-07-15; просмотров: 95 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
СТАТИСТИКА КОММУНАЛЬНОГО ХОЗЯЙСТВА| Виды климатических показателей

mybiblioteka.su - 2015-2025 год. (0.007 сек.)