Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Схема включения и статические характеристики двигателя постоянного тока независимого возбуждения

Читайте также:
  1. A Схема затяжки болтов ГБЦ; болты 5 и 7 длиннее остальных и устанавливаются в свои места
  2. A. АВТОМАТИЧЕСКИЙ ДИСТАНЦИОННЫЙ ЗАПУСК ДВИГАТЕЛЯ
  3. F. ПЕРИОДИЧЕСКИЙ ЗАПУСК ДВИГАТЕЛЯ
  4. G1#G0Схематические карты распределения климатических
  5. I. Измерение частотной характеристики усилителя и определение его полосы пропускания
  6. II.1. Блок-схема и принципиальная схема усилителя.
  7. III. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ УСИЛИТЕЛЕЙ

 

Основная схема включения ДПТ НВ представлена на рис. 2, где приняты следующие обозначения: I, I в, – соответственно токи в цепях обмоток якоря и возбуждения ОВ, А;

Е – ЭДС обмотки якоря, В;

Ω и М – соответственно угловая скорость (рад/с) и момент (Нм) двигателя;

R я= гоя + гдп + rко + гщ – сопротивление цепи обмотки якоря, состоящее из сопро­тивлений обмотки якоря, добавочных полюсов, компенсационной обмотки и щеточного контакта, Ом; R ов – сопротивление обмотки возбуждения, Ом; L я, L ов – соответственно индуктивности обмоток якоря и возбуждения, Гн. На схеме показаны добавочные резисторы в цепях обмоток якоря R д и возбуждения R в, а также от­дельные источники питания обмоток якоря и возбуждения с напря­жениями соответственно U и U в.

 

При выводе уравнений для статических характеристик двигате­ля примем следующие допущения: реакция якоря не учитывается; момент на валу двигателя равен электромагнитному моменту. Уравнение равновесия напряжения цепи обмотки якоря, ЭДС якоря и электромагнитного мо­мента для установившегося режима работы двигателя и принятых допущениях были выведены в разделе 2.1 и имеют вид

 

U = Е + IR; (65)

Е = СеФΩ; (66)

М = СмФ I, (67)

Ф=const,

где R = R я + R д – полное сопротивление цепи якоря, Ом; R д – регулировочное сопротивление цепи обмотки якоря; Ф – магнит­ный поток, Вб; U – подводимое к якорю напряжение, В; Ce = p п N /(2π a)– конструктивный коэффициент двигателя; р п – число пар полюсов; N – число активных проводников обмотки якоря; а – число параллель­ных ветвей обмотки якоря. В системе СИ коэффициенты См=Ce.

При условии Ф=const произведения СеФ и СмФ также постоянны и могут быть обозначены постоянными коэффициентами k e= СеФ и k м= СмФ.

Коэффициент k e= СеФ называется коэффициентом ЭДС двигателя. Он равен ЭДС двигателя вращающегося со скоростью 1 рад/с при номинальном магнитном потоке.

Коэффициент k м= СмФ называется коэффициентом момента двигателя. Он равен моменту развиваемому двигателем на 1 А тока якоря при номинальном потоке.

Подставляя (66) в (65), получим формулу для электромехани­ческой характеристики Ω(I):

 

Ω = (U - IR)/(CeФ). (68)

 

Формулу для механической характеристики Ω(М) ДПТ НВ полу­чим из (68) с использованием выражения (67):

. (69)

В соответствии с (68) и (69) электромеханическая и механичес­кая характеристики ДПТ НВ представляют собой линейные зави­симости угловой скорости (далее скорости) от тока и момента, вид которых для разных полярностей питающего якорь напряжения по­казан на рис. 19. Здесь электромеханическая и механическая характеристики совмещены, что в соответствии с (67) справедливо в случае СеФ = const.

Рис.19. Статические характеристики ДПТ НВ

 

Их характерными точками являются точка хо­лостого хода, в которой Ω = Ω 0, а I =0, М = 0, и точка короткого замыкания, где Ω = 0, а I = I кз и М = М кз. Отметим, что режим ко­роткого замыкания для электрического двигателя соответствует не­подвижному состоянию якоря при поданном на двигатель напря­жении, а не замыканию его электрических цепей между собой или на корпус. Режим короткого замыкания называется также пуско­вым режимом, поскольку является начальным при включении (пус­ке) двигателя.

Уравнения (68) и (69) можно записать в сокращенной форме:

 

Ω = Ω 0- ΔΩ, (70)

где Ω 0 – скорость идеального холостого хода двигателя,

 

Ω 0= U /(CеФ); (71)

ΔΩ – изменение (перепад) угловой скорости относительно скорости идеаль­ного холостого хода,

ΔΩ = IR /(CеФ) = MR / (СеФ)2. (72)

 

Выражения (68) и (69) позволяют назвать основные способы реализации искусственных характеристик ДПТ НВ, используемых для ре­гулирования скорости вращения ЭП. К ним относятся:

изменение сопротивления добавочного рези­стора в цепи якоря (R д );

– изменение магнитного потока Ф;


Дата добавления: 2015-07-15; просмотров: 202 | Нарушение авторских прав


Читайте в этой же книге: Основные технические параметры ЭП | Уравнения динамики электропривода как электромеханической системы | Уравнения Лагранжа-Максвелла 2 рода | Вывод уравнений динамики электрического привода постоянного тока | Расчетные схемы механической части электропривода. Одномассовая расчетная схема | Приведение момента нагрузки Мс к валу двигателя | Многомассовые расчетные схемы | Неустановившееся движение электропривода при постоянном динамическом моменте | Регулирование скорости | Регулирование момента и тока |
<== предыдущая страница | следующая страница ==>
Регулирование положения| Изменение подводимого к якорю напряжения U.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)