Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Угол диэлектрических потерь

Читайте также:
  1. Виды предпринимательских потерь
  2. Гипокалиемия вследствие повышенных потерь калия
  3. Джеймс Лонг. Список потерь
  4. Затухание рабочих волн в металло-диэлектрических волноводах
  5. Изучение потерь рабочего времени.
  6. Изучение скрытых целосменных и внутрисменных потерь
  7. Классификация потерь населения в очагах поражения в военное время.

Электрические характеристики диэлектриков

Объемное сопротивление — сопротивление диэлектрика при прохождении через него постоянного тока. Для плоского диэлектрика оно равно:

Rv = ρv (d / S), Ом

где ρv - удельное объемное сопротивление диэлектрика, представляющее собой сопротивление куба с ребром 1 см при прохождении постоянного тока через две противоположные грани диэлектрика, Ом-см, S — площадь сечения диэлектрика, через которое проходит ток (площадь электродов), см2, d - толщина диэлектрика (расстояние между электродами), см.

Поверхностное сопротивление диэлектрика

Поверхностное сопротивление - сопротивление диэлектрика при прохождении тока по его поверхности. Это сопротивление составляет:

Rs = ρs (l / S), Ом

где ps - удельное поверхностное сопротивление диэлектрика, представляющее собой сопротивление квадрата (любых размеров) при прохождении постоянного тока от одной его стороны к противоположной, Ом, l- длина поверхности диэлектрика (в направлении прохождения тока), см, S — ширина поверхности диэлектрика (в направлении, перпендикулярном прохождению тока), см.

Диэлектрическая проницаемость.

Как известно, емкость конденсатора - диэлектрика, заключенного между двумя параллельно расположенными и находящимися друг против друга металлическими обкладками (электродами), составляет:

С = (ε S) / (4π l), см,

где ε - относительная диэлектрическая проницаемость материала, равная отношению емкости конденсатора с данным диэлектриком к емкости конденсатора таких же геометрических размеров, но диэлектриком которого является воздух (вернее вакуум); S - площадь электрода конденсатора, см2, l - толщина диэлектрика, заключенного между электродами, см.

Угол диэлектрических потерь

Потеря мощности в диэлектрике при приложении к нему переменного тока составляет:

Pa = U х Ia, Вт

где U - приложенное напряжение, Ia - активная составляющая тока, проходящего через диэлектрик, А.

Как известно: Ia = Iр / tgφ = Iрх tgδ, А, Iр = U2πfC

где Iр - реактивная составляющая тока, проходящего через диэлектрик, А, С - емкость конденсатора, см, f - частота тока, гц, φ - угол, на который вектор тока, проходящий через диэлектрик, опережает вектор напряжения, приложенного к этому диэлектрику, град, δ - угол, дополняющий φ до 90° (угол диэлектрических потерь, град).

Таким образом, величина потери мощности определяется:

Pa = U22πfCtgδ, Вт

Большое практическое значение имеет вопрос зависимости tgδ от величины приложенного напряжения (кривая ионизации).

При однородной изоляции, не имеющей расслоений и растрескиваний, tgδ почти не зависит от величины приложенного напряжения; при наличии расслоений и растрескиваний с увеличением приложенного напряжения tgδ резко возрастает из-за ионизации промежутков, заключенных внутри изоляции.

Периодическое измерение угла диэлектрических потерь (tgδ) и его сравнивание с результатами предыдущих замеров характеризуют состояние изоляции, степень и интенсивность ее старения.


Дата добавления: 2015-07-15; просмотров: 80 | Нарушение авторских прав


Читайте в этой же книге: Термопластичные и термореактивные свойства диэлектриков | Полимеризационные термопластичные смолы | Феноло-формальдегидные смолы | Карбамидные (мочевино-формальдегидные) смолы | Физические величины и их единицы в СИ | Механика | Термодинамика. | Электродинамика | Оптика. Электромагнитные волны | Тема 3. Справочные таблицы |
<== предыдущая страница | следующая страница ==>
Текстовые документы| Физико-химические характеристики диэлектриков

mybiblioteka.su - 2015-2024 год. (0.009 сек.)