Читайте также: |
|
Так как количество уровней в ряду мало, то для выбора вида уравнения динамики можно использовать графический метод или метод наименьших квадратов.
Применим графический метод. Нанесем на поле координат точки, соответствующие значениям признака в каждом периоде. Проведем прямую линию, наиболее точно отражающую тенденцию распределения точек.
На проведенной прямой выберем 2 произвольные точки. Используя их координаты, решим следующую систему уравнений:
a+b* =;
a+b* =;
a=, b=.
Уравнение динамики имеет вид: y= +.
Метод наименьших квадратов дает оценку параметров, отвечающую принципам максимального правдоподобия, лишь в том случае, когда распределение в совокупности подчиняется нормальному закону. В нашем случае гипотеза о нормальном характере распределения была отвергнута. Поэтому методу МНК нельзя полностью доверять.
Рассчитаем параметры уравнения прямой линейной зависимости:
5*a+0*b=29176,60
0*a+10*b=14449,5
a=5835,32; b=1444,95;
Сумма квадратов отклонений фактических значений признака от теоретических равна 329329,28.
Рассчитаем параметры уравнения параболы:
5*a+0*b+10*c=29176,60
0*a+10*b+0*c=14449,5
10*a+0*b+34*c=60431,3
a=5538,45; b=1444,95; c=148,44.
Сумма квадратов отклонений фактических значений признака от теоретических равна 20865,03.
Рассчитаем параметры уравнения третьей степени:
5*a+0*b+10*c+0* d =29176,60
0*a+10*b+0*c+34*d=14449,5
10*a+0*b+34*c+0*d=60431,3
0*a+34*b+0*c+130*d=49062,9
a=5538,45; b=1460,392; c=148,44; d=-4,54.
Сумма квадратов отклонений фактических значений признака от теоретических равна 20568,00.
Минимальное значение суммы квадратов отклонений фактических значений признака от теоретических соответствует последнему уравнению. Таким образом, уравнение динамики имеет вид:
y = -4,5417x3 + 148,44x2 + 1460,4x + 5538,4.
Рассчитаем показатели колеблемости, для чего сначала вычислим показатели отклонения от тренда:
Наименование показателя | -2 | -1 | |||
Уровень ряда (фактический), ед. | 3230,60 | 4299,60 | 5435,60 | 7211,30 | 8999,50 |
Уровень ряда (теоретический), ед. | 3247,74 | 4231,03 | 5538,45 | 7142,73 | 9016,64 |
Отклонение фактического уровня ряда от теоретического, ед. | -17,14 | 68,57 | -102,85 | 68,57 | -17,14 |
Таблица 11 – показатели отклонения от тренда
Наименование показателя | Значение |
Амплитуда отклонений от тренда | 171,41 |
Среднее линейное отклонение от тренда | 17,14 |
Среднее квадратическое отклонение от тренда | 143,42 |
Относительное линейное отклонение от тренда | 0,00 |
Коэффициент аппроксимации | 0,02 |
Таблица 12 – показатели колеблемости
Анализ полученных результатов позволяет сделать вывод о том, что полученная зависимость наилучшим образом аппроксимирует исходные данные. Очень низкие коэффициент аппроксимации, показывающий очень слабую колеблемость тенденции, и относительное линейное отклонение от тренда позволяют использовать тренд для прогнозирования изменения значений показателя среднедушевых денежных доходов в месяц на срок приблизительно 1,5 года.
Заключение
В результате проделанной работы по многостороннему исследованию совокупности, состоящей из 88 регионов РФ, по показателю «Доля денежных доходов, расходуемых на прирост финансовых активов, % в 2004г.» можно сделать следующие выводы:
Выяснилось, что лишь 34% регионов имеет показатель ниже среднего, оставшиеся 66 субъектов РФ имеют показатель выше среднего, что свидетельствует о достаточно высоких размерах финансовых активов.
Гипотеза о нормальном характере распределения не подтвердилась вследствие выраженной правосторонней асимметрии
В результате построения ряда динамики по показателю «Среднедушевой денежный доход в месяц, руб. по Центральному федеральному округу за 2000-2004гг.» и его последующего анализа было получено уравнение третьей степени, наилучшим образом описывающее тенденцию динамики:
y = -4,5417x3 + 148,44x2 + 1460,4x + 5538,4.
Данное уравнение с большой долей вероятности можно использовать для прогнозирования.
При проведении выборки и анализе выборочных совокупностей установлено, что генеральная средняя попадает во все доверительные интервалы, рассчитанные для вероятностей 0,76; 0,86; 0,88; 0,96 как в малой, так и в большой выборке. Но значительной степени это объясняется не столько высокой репрезентативностью выборок, сколько большим значением предельной ошибки, на которую, в свою очередь, повлияла большая величина дисперсий.
В заключении необходимо отметить, что выполнение данного курсового проекта позволило приобрести навыки по обработке больших массивов статистических данных и их.
Дата добавления: 2015-07-15; просмотров: 81 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Моделирование ряда распределения | | | Приложение А |