Читайте также:
|
|
Простейшим из показателей данной группы является вариационный размах. Он равен 70,4%, что является достаточно большим значением. Но он дает лишь самое общее представление о размерах вариации, так как показывает, насколько отчаются друг от друга крайние значения, но не указывают, насколько велики отклонения значений признака друг от друга внутри этого промежутка.
Более точным будет такой показатель, который учитывает отклонение каждой из вариант от средней величины. Среднее линейное отклонение составило 10,86%. Именно на это значение отклоняется в среднем доля доходов, идущих на пополнение финансовых активов, от своего среднего значения. Также необходимо рассчитать среднее квадратическое отклонение. Оно равно 14,23%. По свойству мажорантности средних среднее квадратическое отклонение всегда больше среднего линейного отклонения. Соотношение среднего квадратического отклонения и среднего линейного отклонения, равное 1,31, позволяет сделать вывод об отсутствии нормального распределения.
Дисперсия – это средний квадрат отклонений индивидуальных значений признака от их средней величины. В нашем случае она равна 202,49%.
К относительным показателям вариации относят: относительный размах вариации (2,6), относительное линейное отклонение (0,4) и коэффициент вариации (0,53). Коэффициент вариации отражает состояние между вариацией выборки и ее центром. Данное значение коэффициента свидетельствует о том, что степень концентрации вокруг среднего допустима.
Относительное линейное отклонение показывает, что доля усредненного значения абсолютных отклонений от средней величины составляет 40%.
Относительный размах вариации отражает относительную колеблемость крайних значений признака вокруг средней. Такое значение коэффициента говорит о том, что относительный разброс значений признака достаточно высок.
Характеристики формы распределения вариационного ряда
Сюда относятся коэффициент асимметрии и коэффициент эксцесса.
Коэффициент асимметрии рассчитывается с помощью моментов третьего порядка. Для данной совокупности он равен 1,04. Такое значение показывает, что имеет место выраженная правосторонняя асимметрия и большинство значений признака имеет значение ниже среднего.
Так как коэффициент асимметрии не равен нулю, то не имеет смысла рассчитывать показатель эксцесса. Все вышеперечисленное подтверждает гипотезу об отсутствии нормального распределения.
Дата добавления: 2015-07-15; просмотров: 67 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Группировка с выделением регионов со значением показателя выше и ниже показателя в Челябинской области | | | Моделирование ряда распределения |