Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Нормированное (нормальное) уравнение прямой.

Читайте также:
  1. I. Дифференциальное уравнение вида
  2. II этап – знакомство с уравнением и овладение способом его решения.
  3. II. Дифференциальное уравнение вида
  4. Виды рейсов и их характеристика. Уравнение времени рейса
  5. Волновая функция и уравнение Шредингера. Статический смысл волновой функции.
  6. Вывести уравнение для расчета потерь давления в газопроводах с учетом изменения плотности газа.
  7. Дифференциальное уравнение первого порядка в полных дифференциалах.

L
M
P
n
y
x
O
q
n
Рассмотрим произвольную прямую L. Проведем через начало координат О прямую n^L, Р=LÇn – точка пересечения прямых. n –единичный вектор прямой n, и, следовательно, нормальный вектор прямой L, его направление совпадает с направлением отрезка ОР (если точки О и Р совпадают, то направление вектора n выбирают произвольно).

Выразим уравнение прямой L через два параметра: длину р отрезка ОР и угол q между вектором n и осью Ох.

Т.к. n – единичный вектор, то его координаты равны проекциям на оси координат:

n ={cos q,sin q} (13)

Точка М(х,у) лежит на прямой L тогда и только тогда, когда проекция вектора на ось, определяемую вектором n, равна р, т.е. при условии пр n =р (14)

Т.к. , то ½ n ½пр n =пр n = n × (15)

n × =х cos q+уsin q (16)

Т.о. точка М(х,у) лежит на прямой L тогда и только тогда, когда координаты этой точки удовлетворяют уравнению:

х cos q+уsin q=р или х cos q+уsin q-р=0 (17)– нормированное (нормальное) уравнение прямой.

Общее уравнение прямой Ах+Ву+С=0 можно преобразовать в нормальное.

Если прямая задана общим уравнением Ах+Ву+С=0 и нормированным уравнением х cos q+уsin q-р=0, то найдется число t такое, что:

tА=cosq, tB=sinq, tC=-p.

Возведя в квадрат первые два равенства и сложив их, получим: t2(A2+B2)=1.

Тогда t= .

Т.к. всегда расстояние р³0, то из равенства tC=-p заключаем, что знак t противоположен знаку C.

Т.о., для приведения общего уравнения прямой Ах+Ву+С=0 к нормированному виду, следует умножить его на нормирующий множитель t= , знак которого противоположен знаку С.

Если С=0, то прямая проходит через начало координат (р=0). В этом случае знак нормирующего множителя можно выбирать любым.

Пример. Написать нормированное уравнение прямой 3х-4у+10=0.

Т.к. С=10>0. то нормирующий множитель равен . Нормированное уравнение имеет вид: - х+ у-2=0. Здесь р=2, cos q=- , sin q= , q= .

Отклонение точки от прямой.

Даны прямая L:Ах+Ву+С=0 и точка М000), не лежащая на ней. Расстоянием от точки М0 до прямой L называется длина перпендикуляра М0М1, опущенного из этой точки на прямую: d=ρ(M0,L).

Определение. Отклонением d точки М000) от прямой L называется число + d в случае, когда точка М0 и начало координат О лежат по разные стороны от прямой L, и число –d, когда точки М0 и О лежат по одну сторону от прямой L.

Если начало координат О лежит на прямой L, то полагают отклонение равным +d в том случае, когда точка М0 по ту сторону от L, куда направлен нормальный вектор n, и равным -d в противном случае.

Теорема. (с. 128) Пусть прямая L задана нормированным уравнением

х cos q+уsin q-р=0 (17). Тогда отклонение точки М000) от прямой L, равно:

d=х0 cos q+у0 sin q-р (18)

Учитывая процедуру преобразования общего уравнения прямой в нормальное, получаем формулу для расстояния от точки М000) до прямой L, заданной своим общим уравнением: d= (19)

Формула (19) позволяет найти и расстояние от точки до прямой.

Пример. Найти длину высоты ВН ΔАВС, если В(1;2), а уравнение прямой, содержащей сторону АС: 6х-8у+5=0.

Находим длину ВН как расстояние от точки В до прямой АС: =0,5.

d
х
у
О
M0(x0;y0)
M1(x1;y1)
M2(x2;y2)

 

Рассмотрим точку М2 L, ее координаты удовлетворяют уравнению прямой, т.е. Ах2+Ву2+С=0 (*). Координаты вектора =(х0202).

Вектор n= (A;B) - нормальный вектор прямой (в его качестве можно рассмотреть вектор , т.к. L). Тогда

d=

(т.к. из (*) С=- Ах2-Ву2)


Дата добавления: 2015-07-14; просмотров: 102 | Нарушение авторских прав


Читайте в этой же книге: Параметрическое уравнение линии. | Пример. Уравнение сферы. | Прямая на плоскости. |
<== предыдущая страница | следующая страница ==>
Уравнение прямой с угловым коэффициентом.| Расстояние от точки до прямой.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)