Читайте также:
|
|
Пусть на этапе отделения корней получены две точки A и B (A<B), между которыми находится корень уравнения (3.1), т.е. такие точки, в которых знаки значений функции F (x) противоположны (см. рис.3.2): sign F (A) ¹ sign F (B).
Метод дихотомии, называемый еще методом половинного деления, заключается в следующем:
1) определяется середина отрезка [ A, B ]:
![]() | (3.2) |
2) вычисляется значение функции в этой точке - F (P) и его знак sign F (P);
3) корень уравнения (3.1) находится в той половине отрезка [ A, B ], на концах которой функция F (x) имеет разные знаки. Если это будет половинка [ A, P ], то перенесем точку B в точку P; если же половинка [ P, B ], то перенесем точку A в точку P. Благодаря этой операции длина отрезка [ A, B ], на котором находится корень уравнения, уменьшилась вдвое, т.е. можно сказать, что значение корня определено с точностью до длины полученного отрезка.
Каждое новое повторение действий 1,2,3 будет давать все более точные значения корня уравнения. Повторение этого процесса следует прекращать, когда длина отрезка [ A, B ] станет меньше заранее заданного значения , являющегося в данном случае ошибкой ограничения, т.е. неравенство
B - A < ![]() | (3.3) |
является критерием окончания вычислительного процесса.
![]() |
Если величина ![]() ![]() ![]() ![]() ![]() |
Дата добавления: 2015-07-14; просмотров: 121 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Отделение корней | | | Метод хорд |