Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод дихотомии

Читайте также:
  1. Crown Down-методика (от коронки вниз), от большего к меньшему
  2. Cостав и расчетные показатели площадей помещений центра информации - библиотеки и учительской - методического кабинета
  3. I 0.5. МЕТОДЫ АНАЛИЗА ЛОГИСТИЧЕСКИХ ИЗДЕРЖЕК
  4. I. Общие методические приемы и правила.
  5. I. Организационно-методический раздел
  6. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  7. I. Семинар. Тема 1. Понятие и методологические основы системы тактико-криминалистического обеспечения раскрытия и расследования преступлений

Пусть на этапе отделения корней получены две точки A и B (A<B), между которыми находится корень уравнения (3.1), т.е. такие точки, в которых знаки значений функ­ции F (x) противоположны (см. рис.3.2): sign F (A) ¹ sign F (B).

Метод дихотомии, называемый еще методом половинного деления, заключается в следующем:

1) определяется середина отрезка [ A, B ]:

;   (3.2)

2) вычисляется значение функции в этой точке - F (P) и его знак sign F (P);

3) корень уравнения (3.1) находится в той половине отрезка [ A, B ], на концах которой функция F (x) имеет разные знаки. Если это будет половинка [ A, P ], то перенесем точку B в точку P; если же половинка [ P, B ], то перенесем точку A в точку P. Благодаря этой операции длина отрезка [ A, B ], на котором находится корень уравнения, уменьшилась вдвое, т.е. можно сказать, что значение корня определено с точностью до длины полученного отрезка.

Каждое новое повторение действий 1,2,3 будет давать все более точные значения корня уравнения. Повторение этого процесса следует прекращать, когда длина отрезка [ A, B ] станет меньше заранее заданного значения , являющегося в данном случае ошиб­кой ограничения, т.е. неравенство

B - A < (3.3)

является критерием окончания вычислительного процесса.

Рис.3.3. Алгоритм метода дихотомии   Если величина задана очень малая, то вблизи корня значения F (x) могут ока­заться сравнимыми с погрешностью ее вычисления, т.е. при подходе к корню вычисли­тельный процесс может попасть в так называемую "полосу шума", и дальнейшее уточне­ние корня окажется невозможным. Поэтому кроме точности надо задавать в алгоритме ширину "полосы шума" 1 и прекращать процесс при попадании в него, т.е. неравенство F(P) | < 1 является дополнительным критерием окончания вычислительного процесса. Схема алгоритма представлена на рис.3.3.       Рис.3.2. Геометрическая интерпретация метода дихотомии

 


Дата добавления: 2015-07-14; просмотров: 121 | Нарушение авторских прав


Читайте в этой же книге: Метод Ньютона (метод касательных) | Метод простых итераций | Для примера рассмотрим два разных преобразования одного и того же уравнения | Следовательно, из (3.18) получаем |
<== предыдущая страница | следующая страница ==>
Отделение корней| Метод хорд

mybiblioteka.su - 2015-2024 год. (0.006 сек.)