Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Загальні поняття про матриці

Читайте также:
  1. I. Загальні положення
  2. IОсновні поняття
  3. Визначення поняття внутрішньошкільного контролю. Принципи, мета, задачі та функції контролю.
  4. Договір довічного утримання (догляду): поняття, предмет, форма, сторони.
  5. Забезпечення виконання зобов’язання: поняття, загальні умови та види.
  6. Загальне поняття економетричної моделі
  7. Загальні вимоги до організації виробництва

Вступ

Теорія обернених матриць та їх знаходження за формулою на даний момент є актуальною, адже вона використовується в багатьох сферах економіко-математичного програмування сучасного світу.

Матриці використовуються з метою виявлення оптимального способу дій при розв’язанні задач керування системами, зокрема – економічними. Предметом дослідження процесу знаходження обернених матриць за допомогою формули є задачі пошуку оптимальних управлінських рішень, що математично зводяться до задач знаходження умовного розв’язку функції багатьох змінних.

Оскільки математичні методи не можуть застосовуватися безпосередньо до досліджуваного об'єкта (фірми або організації), необхідною є побудова адекватної цьому об’єкту математичної матриці. Під математичною матрицею об'єкта розуміється деяка штучна система, що спрощено відбиває структуру й основні закономірності розвитку реального об'єкта так, що її вивчення подає інформацію про стан і поведінку самого досліджуваного об'єкта. Простими словами за допомогою матричного методу аналізу існує можливість встановити реальне економічне становище досліджуваного об’єкта, а за допомогою оберненої матриці можна винайти можливість покращення його теперішнього стану.

Метою курсової роботи є вивчення матеріалу по оберненим матрицям на основі якого складається написання програми обчислення оберненої матриці до заданої.

Розкриваючи сутність тематики даного курсового дослідження виникає перелік певних завдань, виконання яких обов’язкове для його реалізації. До них відносяться:

- визначення поняття матриць та обернених матриць;

- висвітлення формули для знаходження обернених матриць;

- відображення прикладів застосування формули до матриць.


Загальні поняття про матриці

Поняття матриці, є одним із найважливіших понять не лише в алгебрі, а й в усій сучасній математиці. Поняття матриці вперше ввели англійські математики У. Гамільтон, Д. Келі і Дж.Сільвестра в середині XIX ст.Основи теорії матриць створені К.Веєрштрасом і Г.Фробеніусом в другій половині XIX ст. і поч. XX ст.

1.1Основні означення

Прямокутна таблиця чисел a ij = 1, 2,.... m; j= 1, 2,..., n, складена з m рядків та n стовпців і записана у вигляді

називається матрицею.

Коротко матрицю позначають так:

А=(аij) або Аmn

де a ij — елементи матриці, причому індекс i в елементі aij означає номер рядка, j— номер стовпця, на перетині яких стоїть даний елемент.

Рядок чисел аі1, аі2, …, аin називають і-им рядком, а стовпець чисел

а1 j,a2 j,…,am j — j-им стовпцем матриці А mn.

Добуток числа рядків m на число стовпців n називають розміром матриці і позначають m х n. Якщо хочуть вказати розмір m х n матриці А, то пишуть А mn. Матриці позначають прописними літерами латинського алфавіту А, В, С і т.д.

Матриця, в якої число рядків дорівнює числу стовпців, називається квадратною. Кількість рядків (стовпців) квадратної матриці називається її порядком. Матриця, у якої всього один рядок, називається матрицею-рядком, а матриця, у якої всього один стовпець — матрицею-стовпцем. Дві матриці Аmn=(a ij) та Вmn= (bij) називаються рівними, якщо вони однакових розмірів і мають рівні відповідні елементи: а ij = bij. Нульовою називається матриця, у якої всі елементи дорівнюють нулю. Позначається така матриця буквою О.

В квадратних матрицях виділяють головну і побічну діагональ. Квадратна матриця називається діагональною, якщо всі її елементи, крім тих, що знаходяться на головній діагоналі, дорівнюють нулю. Діагональна матриця, у якої кожен елемент головної діагоналі дорівнює одиниці, називається одиничною і позначається буквою Е. Наприклад, одинична матриця третього порядку має вигляд

Будь-якій квадратній матриці

A =

можна поставити у відповідність певне число, яке називається ви­значником (детермінантом) цієї матриці і позначається символом det А. За означенням

а11, а12,... а1n

det A = = а21, а22,... а2n

...................

аm1m2,... аmn

або .

Алгебраїчним доповненням елемента називається число, рівне.

Доповнюючим мінором елемента матриці називається визначник матриці n-1-го порядку, отриманий з матриці викреслюванням i-го рядка і j-го стовпця.

 


Дата добавления: 2015-10-28; просмотров: 222 | Нарушение авторских прав


Читайте в этой же книге: Обернена матриця | Способи знаходження обернених матриць | Розгорнутий алгоритм для знаходження оберненої матриці |
<== предыдущая страница | следующая страница ==>
Формулировка математической модели и ее описание| Дії над матрицями

mybiblioteka.su - 2015-2024 год. (0.007 сек.)