Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Расчетное определение сварочных напряжений

Читайте также:
  1. I. Определение группы.
  2. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  3. I. Определение и проблемы метода
  4. III. Определение средней температуры подвода и отвода теплоты
  5. IX. Империализм и право наций на самоопределение
  6. А) Определение, предназначение и история формирования государственного резерва.
  7. А) философское определение материи

В предыдущем параграфе были рассмотрены примеры определения напряжений в стержнях, жестко закрепленных по концам. В некоторых простейших случаях напряжения при сварке могут быть определены точно таким же способом. Например, с использованием гипотезы плоских сечений могут быть просто определены напряжения в очень широкой пластине, по кромке которой перемещается источник нагрева (рис. 7.7, а). Поперечные сечения /, //, /// принимаем не искривляющимися и не перемещающимися относительно друг друга. Рассматриваем только напряжения σx. В продольных сечениях 1, 2 и 3 будут разные термические циклы, показанные на рис. 7.7, бг. Временные напряжения σx будут зависеть от температуры и характера ее изменения. На рис. 7.7, б в области

высоких температур напряжения на участке АВ отсутствуют, далее появляются растягивающие напряжения — они достигают предела текучести. На рис. 7.7, е напряжения сжатия в сечении 2 на участке СD равны пределу текучести, затем меняют знак, но в процессе остывания металла не достигают предела текучести. В сечении 3 максимальные температуры незначительны, напряжения сжатия не вызывают пластической деформации (рис. 7.7, г) и после полного остывания напряжения σx в этой точке отсутствуют. Эпюра остаточных напряжений σx в поперечном сечении показана на рис. 7.3, д.

Более сложным является определение сварочных напряжений в случае, когда искривлением сечений можно пренебречь, но взаимные перемещения поперечных сечений в процессе сварки относительно друг друга необходимо учитывать. Для определения сварочных напряжений в сталях в этих случаях могут быть использованы графорасчетные методы Г. А. Николаева и Н. О. Окерблома. В этих методах приняты следующие допущения.

1. Рассматривают только продольные напряжения σx. Поперечные напряжения σy и касательные τxy считают равными нулю.

 

2. Поперечные сечения плоские, но могут перемещаться относительно друг друга.

3. Зависимость предела текучести для низкоуглеродистой стали схематизирована по типу, показанному пунктирной линией 1 на рис. 7.5.

4. Материал идеальный упругопластический (см. рис. 7.4).

5. Модуль упругости Е постоянен во всем диапазоне гемператур.

6. Свариваемые пластины, каждая шириной В, считают достаточно длинными (рис. 7.8), чтобы можно было использовать квазистационарное распределение температур; температура по толщине пластин распределена равномерно.

На рис. 7.8, б показано квазистационарное распределение температур при сварке длинных в направлении х — х пластин. В методе Г. А. Николаева рассматриваются деформации и напряжения только в двух сечениях пластины: в сечении 1—1, соответствующем наибольшей ширине изотермы 600 °С, и в сечении 2 — 2 после полного остывания пластины (сечение 2~2 на рисунке не показано). Считается, что свариваемые встык пластины собраны на прихватках и относительно друг друга не поворачиваются, т. е. это соответствует случаю проплавления целой пластины шириной 2В.

Рассмотрим распределение собственных напряжений и деформаций в сечении 1— 7, используя равенство (7.4). Перед сваркой начальные деформации ε0пл были равны нулю, а температурные рассматриваемом сечении εα = αТ. Тогда, перенося в левую часть εупр + εпл, а в правую часть εн и меняя знак, получаем

 

Решим уравнение (7.11) графически. Возьмем рядом с сечением 1—1 второе сечение 1’—1’, находящееся от него на расстоянии, равном единице. Температурная деформация выделенной полоски в направлении Ох составит αТ. Отложим значения величины — αТ, находящейся в правой части уравнения (7.11), на рис. 7.8, а в виде толстой кривой линии вниз как отрицательные. Теперь необходимо определить εн1. Согласно допущению 2, поперечные сечения не искривляются, поэтому наблюдаемая деформация εн полоски между

1—1 и 1’—1’ будет одной и той же по всей ширине пластины 2В. Положение линии т—т', определяющей на рис. 7.8, а значениеεн1 можно находить путем подбора методом последовательных приближений, исходя из условия взаимной уравновешенности собственных напряжений в пределах поперечного сечения 1—1. Какизвестно, собственные напряжения при одноосном напряженномсостоянии пропорциональны упругим деформациям σ = εупрE.Поэтому достаточно получить уравновешенную эпюру упругихдеформаций εупр, чтобы иметь уравновешенность собственных напряжений. Рассмотрим подробно определение упругих и пластических деформаций при произвольно выбранном εн1. После того какпроведена линия т — т', показывающая предположительное значение εн1, вниз от т — т' откладывают предельно возможную упругую деформацию εупр = εт = σт и проводят горизонтальнуюлинию ас. В соответствии с рис. 7.5 εТ постоянна до Т = 500 °С.В диапазоне от 500 до 600 °С предел текучести меняется линейно,поэтому на участке се упругая деформация убывает до нуля иостается равной нулю при Т ≥ 600 °С.

На рис. 7.8, а вертикально заштрихована эпюра упругих деформаций, а косо—эпюра пластических деформаций. Если окажется,что эпюра упругих деформаций уравновешена, т. е.

то εн1 выбрана удачно. Если нет, то нужно задаться новым положением линии т — т' и повторить построение. Наблюдаемая деформация εн1 на рис. 7.8, а оказалась положительной, и это означает, что пластина в процессе нагрева при сварке удлиняется. Упругие деформации удлинения показаны со знаком плюс, а деформации укорочения — со знаком минус. Зоны шириной b1 испытывают только упругие деформации, зоны b2 и b3 — упругие и пластические, а зона b4 — только пластические деформации. Зоны b2, b3 и b4 составляют так называемую зону пластических деформаций 2bп.

Для определения остаточных деформаций и напряжений нужно рассмотреть стадию остывания пластины, т. е. перейти от распределения деформации в сечении 1 — 1 к распределению деформаций в некотором сечении 2 — 2, условно находящемся при температуре, равной 0 °С. Для этого следует воспользоваться уравнением (7.4), в котором в качестве начальных деформаций будут присутствовать пластические деформации, найденные в сечении 1 — 1. По отношению к состоянию в сечении 2—2 состояние в сечении 1 — 1 является начальным.

 

Перепишем уравнение (7.4) в другом виде, введя индексы для рассматриваемого состояния:

Так как после полного остывания Т = 0 °С, то εα2 = 0.

Для определения упругих и пластических деформаций εупр2 и Δεпл2 воспользуемся графическим методом. Отложим на рис. 7.8, в в виде толстой линии эпюру — ε0пл2. Начальные деформации ε0пл2, = Δεпл1 в сечении 1—1. Так как пластические деформации Δεпл1,были деформациями укорочения волокон металла при нагреве и имеют знак минус, то — εпл2 = — Δεпл1 будет положительной, поэтому она отложена вверх. Искомая деформация εн2 будет одинакова по всей ширине пластины, так как принята гипотеза плоских сечений. Далее необходимо задаться некоторой отрицательной величиной εн2, сдвинув начало координат на линию п — п'. Ординаты кривой kfpf’k’ выражают левую часть равенства (7.12), т. е. сумму упругих и приращений пластических деформаций, соответствующих стадии остывания. Чтобы получить отдельно значения упругой и пластической составляющих, необходимо воспользоваться пределом текучести σт при комнатной температуре и определить максимально

возможную упругую деформацию εупр2max = εт. Отложим εт = εт на рис. 7.8, в. Тогда косо заштрихованная часть fpf’ будет выражать приращения пластических деформаций удлинения Δεпл2, возникших при остывании, а прямо заштрихованная часть эпюры —

упругие деформации. Если окажется, что то полокение линии п — п' выбрано удачно. Если эпюра упругих деформаций, пропорциональных остаточным напряжениям, не уравновешена, о следует задаться новым положением п — п', т. е. новым εн2. Остаточные пластические деформации εпл.ост равны алгебраической сумме пластических деформаций при нагреве Δεпл1, и приращений пластических деформаций при остывании Δεпл2 (эпюра аff'а'):

Так как в рассматриваемом случае Δεпл1, по модулю больше Δεпл2, то знак εпл.ост совпадает со знаком Δεпл1 Это означает, что остаточные пластические деформации представляют собой деформации укорочения.

Метод Г. А. Николаева позволяет получить распределение остаточных напряжений σ ост = εупр2 и относительное укорочение сваренной пластины εн2. Как следует из расчета, максимальные остаточные напряжения в низкоуглеродистой стали являются растягивающими, равны пределу текучести и наблюдаются в зоне шва и околошовной зоне, нагревающейся до сравнительно высоких температур. В основном металле, где температура была ниже (200 — 300 °С) остаточные напряжения — сжимающие.

 

Аналогичным путем можно определить напряжения при наплавке валика на кромку полосы (рис. 7.9) или при сварке двух не одинаковых по ширине полос. Отличие будет состоять в том, что поперечные сечения 11 и /'—/', оставаясь плоскими, будут не только поступательно перемещаться, но и поворачиваться относительно друг друга. Положение линий тт ' и п — п' необходимо выбирать так, чтобы не только показанные прямой штрихов- кой суммы упругих деформаций но и суммы их моментов что равносильно уравновешенности собственных напряжений по сумме сил и по сумме моментов сил. Косой штриховкой (контур асетgра) показана эпюра пластических деформаций при нагреве (рис. 7.9, а) и (контур fpf ') при остывании (рис. 7.9, б). Остаточные пластические деформации представлены эпюрой aff’go. Ширина различных зон обозначается b1, b2, b3, b4

и bп аналогично рис. 7.8.

В методе Н. О. Окерблома определение деформаций и напряжений производится в нескольких последовательно расположенных друг за другом сечениях, что позволяет проследить изменение упругих и пластических деформаций в процессе сварки. В первом сечении начальные деформации принимаются равными нулю. В последующих сечениях в качестве начальных деформаций ε0пл присутствуют пластические деформации, полученные для предыдущего сечения. Уравнение (7.12) преобразуется к следующему виду для л-го сечения:

где начальная деформация боплд может быть представлена как пластическая деформация, накопленная на предыдущих этапах:

 

 

Переходя от сечения к сечению, можно получить в каждом из них распределение упругих деформаций и напряжений, а также наблюдаемые деформации.

Алгоритм графорасчетных методов несложен при составлении программы для ЦВМ, что позволяет быстро решать подобные задачи.

При необходимости можно учесть зависимость модуля упругости Е от температуры, а также структурные превращения. В последнем случае температурные деформации εα берутся непосредственно с дилатограммы (см. рис. 7.2, б) при соответствующих температурах.

Точное определение напряжений и деформаций при сварке проводят методами теории пластичности [З], как правило, с использованием метода конечных элементов на мощных ЭВМ. Все тело рассматриваемой пластины разбивают на конечные элементы, более мелкие в зоне нагрева и более крупные в малонагретых частях пластины. Процесс сварки разбивают на небольшие отрезки времени. Сначала напряжения и деформации вычисляют в конце первого отрезка времени Δt1 и находят поле упругих и пластических деформаций. Затем, зная поле пластических деформаций в конце Δt1 и приращение температурных деформаций на отрезке времени Δt2, определяют упругие и пластические деформации в конце Δt2. Решение продолжают до получения установившегося характера напряжений и деформаций при сварке пластины. В этом методе могут быть учтены любые изменения свойств металла, вызванные изменением температуры и пластической деформацией. Метод позволяет получить напряжения σx, σy, σz и все компоненты деформации в элементах пластины.

Аналитические методы решения ввиду сложности сварочных задач большого распространения не получили.


Дата добавления: 2015-07-08; просмотров: 156 | Нарушение авторских прав


Читайте в этой же книге: Изменение свойств металлов при понижении температуры | Основные факторы, снижающие хладостойкость сварных соединений | На вязкость и пластичность образцов с наплавкой | Оценка хладостойкости сварных соединений | Хладостойкости сварных соединений | Свойства основного металла | Свойства сварных соединений при высоких температурах | Расчет сварных соединений на прочность | ГЛАВА 7 | Свойства металлов при высоких температурах |
<== предыдущая страница | следующая страница ==>
Образование напряжений и деформаций при непрерывном нагреве и остывании| Экспериментальные методы определения сварочных напряжений

mybiblioteka.su - 2015-2025 год. (0.009 сек.)