Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Пример 5

Читайте также:
  1. CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ
  2. CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ
  3. CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ
  4. CИТУАЦИОННЫЕ ЗАДАЧИ С ПРИМЕРАМИ РЕШЕНИЯ
  5. VI. ПРИМЕРНАЯ МЕТОДИКА ОБУЧЕНИЯ УПРАЖНЕНИЯМ КУРСА СТРЕЛЬБ
  6. Августа 1792 г. Законодательное собрание во Франции отрешило короля Людовика XVI от власти и заключило его в тюрьму. Это пример проявления санкций
  7. Автомобили - идеальный пример эмпирического продукта

Найти площадь фигуры, ограниченной линиями

, .

 

Пример 6

Найти площадь фигуры, ограниченной линиями

, .

 

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но, по невнимательности,… найдена площадь не той фигуры.

Далее, реальный случай:

 

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике, по невнимательности, нередко решают, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке [-1; 1] над осью OX расположен график прямой y = x +1;

2) На отрезке [1; 3] над осью OX расположен график гиперболы y = (2/ x).

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

 

Пример 8

Вычислить площадь фигуры, ограниченной линиями

, .

Представим уравнения в «школьном» виде

, .

и выполним поточечный чертеж:

 

 

Из чертежа видно, что верхний предел у нас «хороший»: b = 1.

Но чему равен нижний предел?! Понятно, что это не целое число, но какое?

Может быть, a =(-1/3)? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что a =(-1/4). А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения графиков

и .

Для этого решаем уравнение:

.

, .

Следовательно, a =(-1/3).

Дальнейшее решение тривиально. Главное, не запутаться в подстановках и знаках. Вычисления здесь не самые простые. На отрезке

, ,

по соответствующей формуле:

Ответ:

В заключение урока, рассмотрим два задания сложнее.

 

Пример 9

Вычислить площадь фигуры, ограниченной линиями

, , .

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды. Вообще, полезно знать графики всех элементарных функций, а также некоторые значения синуса. Их можно найти в таблице значений тригонометрических функций. В ряде случаев (например, в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия:

– «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке [0; π] график функции y = sin3 x расположен над осью OX, поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях, можно посмотреть на уроке Интегралы от тригонометрических функций. Отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной t = cos x, тогда:

Новые переделы интегрирования:

У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.

.

(4) Здесь мы использовали свойство определенного интеграла

,

расположив пределы интегрирования в «привычном» порядке

Ответ: .

 

Пример 10

Вычислить площадь фигуры, ограниченной линиями

, , .

Это пример для самостоятельного решения. Полное решение и ответ ниже.

 

Рассмотрим интересный пример с арккотангенсом:

 

Пример 11

Вычислить площадь фигуры, ограниченной линиями

;

и координатными осями. Полного решения не будет. Правильный ответ:

.

 

 

Решения и ответы:

Пример 2: Решение: Выполним чертеж:

 

 

На отрезке [2; 4] график функции y = 4/x расположен над осью OX, поэтому:

.

Ответ:

Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.

 

Пример 5: Решение: Выполним чертеж:

На отрезке [-1; 3], , по соответствующей формуле:

.

Ответ:

Пример 6: Решение: Выполним чертеж.

На отрезке [1; 3], (4- x)≥(3/ x), по соответствующей формуле:

.

Ответ:

 

Пример 10: Решение: Изобразим данную фигуру на чертеже:

На отрезке график функции расположен над осью , поэтому:

.

Ответ:

.

Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества

.

Далее в интегралах использован метод подведения функций под знак дифференциала (можно использовать замену в определенном интеграле, но решение будет длиннее).

 

8.2.4. Как вычислить объем тела вращения с помощью определенного интеграла?

 

Кроме нахождения площади плоской фигуры с помощью определенного интеграла (см. 7.2.3.) важнейшим приложением темы является вычисление объема тела вращения. Материал простой, но читатель должен быть подготовленным: необходимо уметь решать неопределенные интегралы средней сложности и применять формулу Ньютона-Лейбница в определенном интеграле, н ужны также уверенные навыки построения чертежей. Вообще в интегральном исчислении много интересных приложений, с помощью определенного интеграла можно вычислить площадь фигуры, объем тела вращения, длину дуги, площадь поверхности тела и многое другое. Представьте некоторую плоскую фигуру на координатной плоскости. Представили?... Теперь данную фигуру можно ещё и вращать, причем вращать двумя способами:

– вокруг оси абсцисс;

– вокруг оси ординат.

Разберём оба случая. Особенно интересен второй способ вращения, он вызывает наибольшие затруднения, но на самом деле решение практически такое же, как и в более распространенном вращении вокруг оси абсцисс. Начнем с наиболее популярной разновидности вращения.

 

Вычисление объема тела, образованного вращением плоской фигуры вокруг оси OX

Пример 1

Вычислить объем тела, полученного вращением фигуры, ограниченной линиями , вокруг оси .

Решение: Как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. То есть, на плоскости XOY необходимо построить фигуру, ограниченную линиями , , при этом не забываем, что уравнение задаёт ось . Чертёж здесь довольно прост:

 

 

Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси . В результате вращения получается такая немного яйцевидная летающая тарелка с двумя острыми вершинами на оси OX, симметричная относительно оси OX. На самом деле у тела есть математическое название, посмотрите в справочнике.

 

Как вычислить объем тела вращения? Если тело образовано в результате вращения вокруг оси OX, его мысленно разделяют на параллельные слои малой толщины dx, которые перпендикулярны оси OX. Объём всего тела равен, очевидно, сумме объёмов таких элементарных слоёв. Каждый слой, как круглая долька лимона, - низенький цилиндр высотой dx и с радиусом основания f (x). Тогда объём одного слоя есть произведение площади основания π f 2 на высоту цилиндра (dx), или π∙ f 2(x)∙ dx. А площадь всего тела вращения есть сумма элементарных объёмов, или соответствующий определённый интеграл. Объем тела вращения можно вычислить по формуле:

.

Как расставить пределы интегрирования «а» и «бэ», легко догадаться из выполненного чертежа. Функция … что это за функция? Давайте посмотрим на чертеж. Плоская фигура ограничена графиком параболы сверху. Это и есть та функция, которая подразумевается в формуле. В практических заданиях плоская фигура иногда может располагаться и ниже оси OX. Это ничего не меняет – функция в формуле возводится в квадрат: f 2(x), таким образом, объем тела вращения всегда неотрицателен, что весьма логично. Вычислим объем тела вращения, используя данную формулу:

.

Как мы уже отмечали, интеграл почти всегда получается простой, главное, быть внимательным.

Ответ:

В ответе нужно обязательно указать размерность – кубические единицы . То есть, в нашем теле вращения примерно 3,35 «кубиков». Почему именно кубические единицы? Потому что это наиболее универсальная формулировка. Могут быть кубические сантиметры, могут быть кубические метры, могут быть кубические километры и т.д., это уж, сколько зеленых человечков ваше воображение поместит в летающую тарелку.

 

Пример 2

Найти объем тела, образованного вращением вокруг оси OX фигуры, ограниченной линиями , , .

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

 

Пример 3

Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , , и .

Решение: Изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая при этом, что уравнение x = 0 задает ось OY:

 

 

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси OX получается плоский угловатый бублик (шайба с двумя коническими поверхностями).

Объем тела вращения вычислим как разность объемов тел. Сначала рассмотрим фигуру, которая обведена красным цветом. При её вращении вокруг оси OX получается усеченный конус. Обозначим объем этого усеченного конуса через V 1.

Рассмотрим фигуру, которая обведена зеленым цветом. Если вращать данную фигуру вокруг оси OX, то получится тоже усеченный конус, только чуть поменьше. Обозначим его объем через V 2.

Очевидно, что разность объемов, V = V 1 - V 2, - это объем нашего «бублика».

Используем стандартную формулу для нахождения объема тела вращения:

1) Фигура, обведенная красным цветом ограничена сверху прямой , поэтому:

.

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

.

3) Объем искомого тела вращения:

Ответ:

Любопытно, что в данном случае решение можно проверить, используя школьную формулу для вычисления объема усеченного конуса.

Само решение чаще оформляют короче, примерно в таком духе:

 


Дата добавления: 2015-07-08; просмотров: 277 | Нарушение авторских прав


Читайте в этой же книге: Последовательная замена переменной и интегрирование по частям | Метод сведения интеграла к самому себе | Интегрирование сложных дробей | Интеграл от неразложимого в знаменателе многочлена 2-ой степени в степени | Интегрирование сложных тригонометрических функций | Интеграл от корня из дроби | Определенный интеграл. Примеры решений | Замена переменной в определенном интеграле | Находим новые переделы интегрирования. | Метод интегрирования по частям в определенном интеграле |
<== предыдущая страница | следующая страница ==>
Площадь криволинейной трапеции численно равна определенному интегралу| Теперь немного о геометрических иллюзиях.

mybiblioteka.su - 2015-2024 год. (0.021 сек.)