|
Читайте также: |
Остроумный и красивый метод. Немедленно рассмотрим классику жанра:
Пример 5
Найти неопределенный интеграл
.
Под корнем находится квадратный двучлен, и при попытке проинтегрировать данный пример чайник может мучаться часами. Такой интеграл берётся по частям и сводится к самому себе. В принципе, не сложно. Если знаешь как.
Обозначим рассматриваемый интеграл латинской буквой I и начнем решение:
.
Интегрируем по частям:
.
.
(1) Готовим подынтегральную функцию для почленного деления.
(2) Почленно делим подынтегральную функцию. Возможно, не всем понятно, распишем подробнее:
.
(3) Используем свойство линейности неопределенного интеграла.
(4) Берём последний интеграл («длинный» логарифм).
Теперь смотрим на самое начало решения:

И на концовку:

Что произошло? В результате наших манипуляций интеграл свёлся к самому себе!
Приравниваем начало и конец:

Переносим I в левую часть со сменой знака:

А двойку сносим в правую часть. В результате:

Или: 
Константу C, строго говоря, надо было добавить ранее, но мы приписали её в конце. Настоятельно рекомендуем прочитать в примечании, в чём тут строгость:
Примечание: Более строго заключительный этап решения выглядит так:

Таким образом:

Константу
можно переобозначить через
. Почему можно переобозначить? Потому что
всё равно принимает любые значения, и в этом смысле между константами
и
нет никакой разницы.
В результате:

Подобный трюк с переобозначением константы широко используется в дифференциальных уравнениях. Там будем строгими, особенно при определении частных решений. А здесь такая вольность допускается только для того, чтобы не путать вас лишними вещами и акцентировать внимание именно на самом методе интегрирования.
Пример 6
Найти неопределенный интеграл
.
Еще один типовой интеграл для самостоятельного решения. Полное решение и ответ в конце урока. Разница с ответом предыдущего примера будет!
Если под квадратным корнем находится квадратный трехчлен, или его часть, то решение в любом случае сводится к двум разобранным Примерам 5 и 6.
Например, рассмотрим интеграл
.
Всё, что нужно сделать – это тождественными преобразованиями предварительно выделить полный квадрат:
.
Далее проводится линейная замена, которая обходится «без всяких последствий»:
, в результате чего получается интеграл
. Нечто знакомое, правда (см. Пример 5)?
Или такой пример, с квадратным двучленом: 
Выделяем полный квадрат: 
И, после линейной замены
, получаем интеграл
, который также решается по уже рассмотренному алгоритму.
Рассмотрим еще два типовых примера на приём сведения интеграла к самому себе:
– интеграл от экспоненты, умноженной на синус;
– интеграл от экспоненты, умноженной на косинус.
В этих перечисленных интегралах по частям придется интегрировать уже два раза:
Пример 7
Найти неопределенный интеграл
.
Подынтегральная функция – экспонента, умноженная на синус.
Дважды интегрируем по частям и сводим интеграл к самому себе:





В результате двукратного интегрирования по частям интеграл свёлся к самому себе. Приравниваем начало и концовку решения:

Переносим
в левую часть со сменой знака и выражаем наш интеграл:

Готово. Попутно желательно причесать правую часть, т.е. вынести экспоненту за скобки, а в скобках расположить синус с косинусом в «красивом» порядке.
Теперь вернемся к началу примера, а точнее – к интегрированию по частям:

За u мы обозначили экспоненту. Возникает вопрос, именно ли экспоненту всегда нужно обозначать за u? Не обязательно. На самом деле в рассмотренном интеграле принципиально без разницы, что обозначать за u, можно было пойти другим путём:
.
Почему такое возможно? Потому что экспонента превращается сама в себя (и при дифференцировании, и при интегрировании), синус с косинусом взаимно превращаются друг в друга (опять же – и при дифференцировании, и при интегрировании).
То есть, за u можно обозначить и тригонометрическую функцию. Но, в рассмотренном примере это менее рационально, поскольку появятся дроби. При желании можете попытаться решить данный пример вторым способом, ответы обязательно должны совпасть.
Пример 8
Найти неопределенный интеграл
.
Это пример для самостоятельного решения. Перед тем как решать, подумайте, что выгоднее в данном случае обозначить за u, экспоненту или тригонометрическую функцию? Полное решение и ответ в конце урока.
Примеры были рассмотрены не самые сложные. На практике чаще встречаются интегралы, где константа есть и в показателе экспоненты и в аргументе тригонометрической функции, например:
.
Попутаться в подобном интеграле придется многим. Дело в том, что в решении велика вероятность появления дробей, и очень просто что-нибудь по невнимательности потерять. Кроме того, велика вероятность ошибки в знаках, обратите внимание, что в показателе экспоненты есть знак «минус», и это вносит дополнительную трудность.
На завершающем этапе часто получается примерно следующее:

Даже в конце решения следует быть предельно внимательным и грамотно разобраться с дробями:

Дата добавления: 2015-07-08; просмотров: 150 | Нарушение авторских прав
| <== предыдущая страница | | | следующая страница ==> |
| Последовательная замена переменной и интегрирование по частям | | | Интегрирование сложных дробей |