Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Метод разложения числителя

Читайте также:
  1. I. Определение и проблемы метода
  2. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  3. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  4. I. Экспертные оценочные методы
  5. II МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ
  6. II. Категории и методы политологии.
  7. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Пример 1

Найти неопределенный интеграл

. Выполнить проверку.

На уроке Неопределенный интеграл. Примеры решений мы избавлялись от произведения функций в подынтегральном выражении, превращая её в сумму, удобную для интегрирования. Оказывается, что иногда в сумму (разность) можно превратить и дробь!

Анализируя подынтегральную функцию, мы замечаем, что и в числителе и в знаменателе у нас находятся многочлены первой степени: x и (x +3). Когда в числителе и знаменателе находятся многочлены одинаковой степени, то помогает следующий искусственный приём: в числителе мы должны самостоятельно организовать такое же выражение, что и в знаменателе:

.

Рассуждение может быть следующим: «В числителе надо организовать(x + 3), чтобы привести интеграл к табличным, но если я прибавлю к «иксу» тройку, то, для того, чтобы выражение не изменилось – я обязан вычесть такую же тройку».

Теперь можно почленно разделить числитель на знаменатель:

В результате мы добились того, чего и хотели. Используем первые два правила интегрирования:

Готово. Проверку при желании выполните самостоятельно. Обратите внимание, что

во втором интеграле – это «простая» сложная функция. Особенности ее интегрирования обсуждались на уроке Метод замены переменной в неопределенном интеграле.

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

 

Пример 2

Найти неопределенный интеграл

.

Выполнить проверку

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

 

 

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто.

В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя больше старшей степени знаменателя.

 

 

Пример 3

Найти неопределенный интеграл

.

Выполнить проверку.

Начинаем подбирать числитель. Алгоритм подбора числителя примерно такой:

1) В числителе нам нужно организовать 2 x -1, но там x 2. Что делать? Заключаю 2 x -1 в скобки и умножаю на x, как: x (2 x -1).

2) Теперь пробуем раскрыть эти скобки, что получится? Получится: (2 x 2- x). Уже лучше, но никакой двойки при x 2 изначально в числителе нет. Что делать? Нужно домножить на (1/2), получим:

.

3) Снова раскрываем скобки, получаем:

.

Получился нужный x 2! Но проблема в том, что появилось лишнее слагаемое (-1/2) x. Что делать? Чтобы выражение не изменилось, мы обязаны прибавить к своей конструкции это же (1/2) x:

. Жить стало легче. А нельзя ли еще раз в числителе организовать (2 x -1)?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:

. Простите, но у нас было на предыдущем шаге (+1/2) x, а не(+ x). Что делать? Нужно домножить второе слагаемое на (+1/2):

.

5) Снова для проверки раскрываем скобки во втором слагаемом:

. Вот теперь нормально: получено (+1/2) x из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое (-1/4), значит, мы обязаны прибавить к своему выражению (1/4):

.

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:

Получился.

Таким образом:

Готово. В последнем слагаемом мы применили метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция

.

Рассмотренный метод разложения x 2 в сумму есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно.

Помимо алгоритма подбора можно использовать деление столбиком многочлена на многочлен, но, боюсь, объяснения займут еще больше места, поэтому - как-нибудь в другой раз.

 

Пример 4

Найти неопределенный интеграл

.

Выполнить проверку.

Это пример для самостоятельного решения.

 

 


Дата добавления: 2015-07-08; просмотров: 343 | Нарушение авторских прав


Читайте в этой же книге: Но, с точки зрения оформления задания, метод подведения функции под знак дифференциала гораздо короче. | Интегрирование по частям. Примеры решений | Формула применяется слева направо | Интегралы от экспоненты, умноженной на многочлен | Интегралы от тригонометрических функций, умноженных на многочлен | Решаем. | Интегралы от тригонометрических функций. Примеры решений | Понижение степени подынтегральной функции | В неопределенном интеграле нередко ответ можно записать несколькими способами. | Метод замены переменной |
<== предыдущая страница | следующая страница ==>
Универсальная тригонометрическая подстановка| Метод подведения под знак дифференциала для простейших дробей

mybiblioteka.su - 2015-2024 год. (0.008 сек.)