Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Решаем.

.

Интегрируем по частям:

Здесь интеграл найден методом подведения функции под знак дифференциала, можно использовать и метод замены в «классическом» виде. Аналогичный пример разбирался на уроке Метод замены переменной в неопределенном интеграле.

Таким образом, помимо «чистого» интегрирования по частям нередко требуется применять другие методы и приёмы решения.

 

Пример 12

Найти неопределенный интеграл

.

Это пример для самостоятельного решения.

 

И заключительный пример сегодняшнего урока под счастливым номером тринадцать: «арк», умноженный на многочлен. Он сложнее, и предназначен для маньяков, желающих лучше разобраться в методе интегрирования по частям. Пример, пожалуй, будет тоже для самостоятельного решения, поскольку меня немного утомил тот логарифм в квадрате.

 

Пример 13

Найти неопределенный интеграл

.

Рассмотренный метод часто применяется в комбинации с другими приёмами решения интегралов. Читатели с хорошими навыками могут ознакомиться с такими примерами на уроке Сложные интегралы.

 

 

Решения и ответы:

 

Пример 3: Решение:

.

 

Пример 4: Решение:

Интегрируем по частям:

.

 

Пример 6: Решение:

Дважды интегрируем по частям:

 

Пример 8: Решение:

Интегрируем по частям:

 

Пример 10: Решение:

Интегрируем по частям:

Примечание: Здесь мы использовали известную тригонометрическую формулу двойного угла . Её можно было использовать и сразу: , а потом интегрировать по частям.

 

Похожим способом также решаются интегралы вроде , – в них необходимо (сразу или в ходе решения) понизить степень синуса (косинуса) с помощью соответствующих формул.

Более подробно – см. Интегралы от тригонометрических функций.

 

Пример 12:

Интегрируем по частям:

 

Пример 13:

Интегрируем по частям:

 

Примечание: Если возникли трудности с интегралом

,

то следует посетить урок Интегрирование некоторых дробей.

 

 


Дата добавления: 2015-07-08; просмотров: 159 | Нарушение авторских прав


Читайте в этой же книге: Приближенные вычисления с помощью дифференциала функции одной переменной | Абсолютная и относительная погрешности вычислений | Приближенные вычисления с помощью полного дифференциала функции двух переменных | Неопределенный интеграл. Подробные примеры решений | Подведение функции под знак дифференциала | Метод замены переменной в неопределенном интеграле | Но, с точки зрения оформления задания, метод подведения функции под знак дифференциала гораздо короче. | Интегрирование по частям. Примеры решений | Формула применяется слева направо | Интегралы от экспоненты, умноженной на многочлен |
<== предыдущая страница | следующая страница ==>
Интегралы от тригонометрических функций, умноженных на многочлен| Интегралы от тригонометрических функций. Примеры решений

mybiblioteka.su - 2015-2024 год. (0.007 сек.)