Читайте также: |
|
Метод основывается на приведении исходной системы к форме , где D – квадратная матрица, полученная из матрицы A, а p – вектор-столбец, полученный из b. Это преобразованиеможет быть выполнено многими способами. Например, путем разрешения каждого i -го уравнения относительно i -го неизвестного:
при этом элементы матрицы D и вектора p
будут вычисляться следующим образом
.
Далее процесс уточнения корня строится по итерационной схеме
,
,
………………
,
……………….
где x 0 – начальное приближение вектора решения системы. То есть
и так далее.
Если последовательность векторов x k (k = 0,1,2,...) имеет конечный предел (тоже вектор), то итерационный процесс сходится к точному решению системы x т за бесконечно большое число шагов. Абсолютная и относительная погрешности найденного вектора решения системы уравнений на k -ом шаге (x k) могут быть получены из выражений
, ,
где в качестве нормы матрицы D можно использовать любое из трёх соотношений, согласованное с применяемым выражением для вычисления нормы вектора
, , .
Кроме приведённого выражения для абсолютной погрешности существуют другие формы её записи
, .
Формулы для вычисления погрешности вектора решения системы линейных алгебраических уравнений требуют нахождения нормы матрицы системы, поэтому на практике часто итерации завершают при выполнении одного из условий
или ,
где δ абс и δ отн – задаваемые абсолютная и относительная разницы между соседними приближениями вектора решения, соответственно. В этом случае надо помнить, что истинная погрешность определения решения может заметно отличаться от δ абс или δ отн. Поэтому после завершения поиска решения необходимо вычислить истинное значение его погрешности по приведённым выше формулам для ε абс или ε отн.
Встречаются ситуации, когда последовательность вычисляемых векторов x k (k = 0,1,2,...) не имеет предела. В этом случае метод расходится, и описанная итерационная схема не может быть применена для решения системы уравнений. Для того, чтобы последовательностьвекторов x k (k = 0,1,2,...) при любом начальном векторе x 0 сходилась к точному решению системы, надо выбирать матрицу D так, чтобы её норма была меньше единицы.
Если описанный выше приём формирования итерационной схемы не позволяет получить матрицу D, которая подчиняется условию сходимости, а матрица А – симметрична и положительно определена, то можно поступить следующим образом. Исходная система линейных алгебраических уравнений
приводится к эквивалентному виду
путем переноса произведения Ax в правую часть уравнения, умножения обеих частей уравнения на константу l и добавления к ним вектора x. В результате этого преобразования получается итерационная схема
,
где
.
Здесь под матрицей E понимается единичная матрица, а один из способов выбора параметра λk заключается в использовании выражения
,
где
, , .
Подбирая таким способом коэффициент λk на каждом шаге процесса итераций, удаётся получить матрицы D k, подчиняющиеся условию сходимости. Описанный приём называется методом простых итераций с релаксацией.
Если система уравнений
имеет матрицу A, которая не является симметричной и положительно определённой, то надо произвести её симметризацию. Она заключается в умножении левой и правой частей системы на транспонированную матрицу A Т
,
что приводит исходную систему к системе
,
где
,
в которой матрица H симметрична и положительна определена.
Метод Зейделя (L.Seidel, 1874)
Этот метод является разновидностью метода простых итераций. Исходная система приводится к такому же виду, как и в методе простых итераций, но процесс итераций организуется иным образом. Как только на k -ой итерациивычислена i -я компонента вектора x k, её значение используют для вычисления последующих компонент , ,..., этого вектора, не дожидаясь начала следующей итерации. Например
Вопрос о сходимости метода Зейделя, в общем виде, является открытым. Однако известно, что выполнение условия сходимости метода простых итераций гарантирует сходимость метода Зейделя. При этом благодаря особенности итерационной схемы, метод Зейделя позволяет за то же количество шагов, что и метод простых итераций, получить более точный результат.
Если при решении системы уравнений методом Зейделя итерационный процесс расходится, то могут использоваться описанные выше приёмы релаксации и симметризации системы уравнений.
В качестве примера применения метода Зейделя можно рассмотреть задачу поиска решения следующей системы уравнений
с относительной разницей между соседними приближениями вектора решения не более 0.01 и с оценкой его погрешности.
Следуя алгоритму метода Зейделя, требуется преобразовать исходную систему уравнений к виду
где
,
и выполнить её проверку на сходимость
Так как условие сходимости выполняется, то итерационный процесс может быть начат с любого удобного значения вектора x. В качестве начального приближения обычно принимается нулевой вектор
Первая итерация
Вторая итерация
Третья итерация
Четвёртая и пятая итерации дают соответственно
,
.
Определение погрешности решения по последней итерации
,
.
Дата добавления: 2015-07-08; просмотров: 222 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Метод Гаусса с выбором главного элемента | | | О выборе метода решения систем уравнений |