Читайте также:
|
|
Критерий IIКраскала-Уоллеса (Kruskal- Wallis H) является непараметрическим аналогом однофакторного дисперсионного анализа (ANOVA) для независимых выборок, поэтому другое его название — Однофакторный дисперсионный анализ Краскала-Уоллеса (Kruskal-Wallis one-way analysis of variance). Он позволяет проверять гипотезы о различии более двух выборок по уровню выраженности изучаемого признака.
Я-Краскала-Уоллеса по идее сходен с критерием £/-Манна-Уитни. Как и последний, он оценивает степень пересечения (совпадения) нескольких рядов значений измеренного признака. Чем меньше совпадений, тем больше различаются ряды, соответствующие сравниваемым выборкам. Основная идея критерия Я-Краскала-Уоллеса основана на представлении всех значений сравниваемых выборок в виде одной общей последовательности упорядоченных (ранжированных) значений, с последующим вычислением среднего ранга для
ЧАСТЬ II. МЕТОДЫ СТАТИСТИЧЕСКОГО ВЫВОДА: ПРОВЕРКА ГИПОТЕЗ
каждой из выборок. Если выполняется статистическая гипотеза об отсутствии различий, то можно ожидать, что все средние ранги примерно равны и близки к общему среднему рангу.
Эмпирическое значение критерия Я-Краскала-Уоллеса вычисляется после ранжирования всех значений сравниваемых выборок по формуле:
Н =
#2
(12.2)
где N— суммарная численность всех выборок; к — количество сравниваемых выборок; Rj — сумма рангов для выборки /; п{ — численность выборки /. Чем сильнее различаются выборки, тем больше вычисленное значение Я и тем меньше/7-уровень значимости.
При расчетах «вручную» для определения /ьуровня пользуются таблицами критических значений. Если объем каждой выборки больше 5 и количество выборок больше трех, то эмпирическое значение критерия сравнивается с х2 (приложение 4) для df= k—\ (к — число выборок). Если сравниваются 3 выборки и объем каждой выборки меньше 5, то пользуются таблицей критических значений Я-Краскала-Уоллеса (приложение 12).
При отклонении нулевой статистической гипотезы об отсутствии различий принимается альтернативная гипотеза о статистически достоверных различиях выборок по изучаемому признаку — без конкретизации направления различий. Для утверждений о том, что уровень выраженности признака в какой-то из сравниваемых выборок выше или ниже, необходимо парное соотнесение выборок по критерию U-Манна-Уитни.
ПРИМЕР 12.3__________________________________________________________
Проверим гипотезу о различии выборок 1, 2 и 3 на уровне а = 0,05:
Шаг 1. Значения выборок объединяются в один ряд, упорядоченный в порядке возрастания или убывания. Обозначается принадлежность каждого значения к той или иной выборке (строки 1 и 2).
Ш а г 2. Значения выборок ранжируются и выписываются отдельно ранги для каждой выборки (строки 3-6).
Ш а г 3. Вычисляются суммы рангов для каждой выборки и проверяется правильность расчетов. R} = 46; R2 =49; R^ = 41. Общая сумма рангов должна быть равна N(N+ l)/2 = 16x17/2 = 136. Равенство соблюдено.
Ш а г 4. Вычисляется Я по формуле 12.2:
ГЛАВА 12. НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ СРАВНЕНИЯ ВЫБОРОК
Шаг 5. Определяется /?-уровень значимости. Хотя сравниваются 3 выборки, но объем одной из них больше 5, поэтому вычисленное Я сравнивается с табличным значением х2 (приложение 4) для числа степеней свободы df— 3 — 1—2. Эмпирическое значение Я находится между критическими для р = 0,05 и р = 0,01. Следовательно, р < 0,05.
Ш а г 6. Принимается статистическое решение и формулируется содержательный вывод. На уровне а = 0,05 гипотеза Но отклоняется. Содержательный вывод: сравниваемые выборки различаются статистически достоверно по уровню выраженности признака (р < 0,05).
Отметим, что на основании такой проверки мы не можем сделать конкретный вывод о направлении различий и о том, в какой выборке признак принимает большие или меньшие значения. Для этого необходимо парное соотнесение выборок по соответствующему критерию (£/-Манна-Уитни).
Дата добавления: 2015-11-04; просмотров: 49 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Обработка на компьютере: критерий (7-Манна-Уитни | | | СРАВНЕНИЕ БОЛЕЕ ДВУХ ЗАВИСИМЫХ ВЫБОРОК |