Читайте также: |
|
Очень простая аналоговая фильтрация низкого уровня, следующая за 1-битовым ЦАП, подавляет спектр внеполосного шума и выдает исходные цифровые данные с высокой точностью и в сокращенной полосе частот. Повторное квантование перевыбранных данных представляет собой обработку сигнала с использованием цифрового Х-Д-модулятора. Единственная дополнительная задача, которую требуется выполнить при использовании Х-Д-ЦАП, состоит в необходимости увеличения частоты произведения выборки в 64 раза, по сравнению с частотой Найквиста. Это выполняется с помощью интерполирующего фильтра, работающего на основе методов цифровой обработки сигналов; этот фильтр представляет собой стандартный блок, который имеется в большинстве систем, использующих ЦАП для перехода между источником цифрового сигнала и аналоговым выходом [12].
В качестве стандартной иллюстрации процесса рассмотрим проигрыватель ком- пакт-дисков, использующий интерполирующий фильтр для реализации преобразования с четырехкратным повышением частоты, приводящего к отделению периодического спектра, который связан с дискретными данными. Это позволяет сглаживающему фильтру, который следует за ЦАП, иметь более широкую полосу частот и, следовательно, меньшее число компонентов и меньшую стоимость реализации. Спецификация компакт-диска содержит такие термины, как, например, “4-to-l oversampled” (“перевыбран с четырехкратной частотой”), чтобы отразить наличие интерполирующих фильтров. После того как с помощью интерполятора 1:4 будет выполнено четырехкратное увеличение частоты дискретизации, дальнейшее преобразование с использованием недорогого интерполирующего фильтра 1:16 является простой задачей. Для завершения аналогового процесса преобразования данные (теперь выбран-
ные с 64-кратной частотой) подаются на полноцифровой Е-Д-модулятор и однобитовый ЦАП. Эта структура изображена на рис. 13.29.
Е-Д- | ||
модулятор |
64 fs 16-битовая выборка |
Выборка 1.64 и • интерполирующий ■ фильтр |
Рис. 13.29. Схема прохождения сигнала в Х-Л-цифро-аналоговом преобразователе
Существует много сигналов, которые по отношению к полосе частот сигнала выбираются с очень большой частотой. Эти сигналы могут быть легко преобразованы в аналоговую форму с использованием Е-Д-модулятора и 1-битового ЦАП. Примерами являются контрольные сигналы схем АРУ, несущие ГУН и сигналы синхронизации ГУН. Многие системы используют Z-Д-модулятор и 1-битовый ЦАП для генерации и формирования аналоговых сигналов управления.
13.4. Адаптивное предсказание
Усиление предсказания, которое получается в классических кодерах с предсказанием, пропорционально отношению дисперсии сигнала к дисперсии ошибки предсказания. Это объясняется тем, что при фиксированном уровне шума квантования требуется меньше бит для описания сигнала с меньшей энергией. Полезность кодера с предсказанием ограничена возможными рассогласованиями между сигналом источника и предсказывающим фильтром. Источники рассогласования связаны с переменным во времени поведением (т.е. нестационарностью) распределения амплитуды и спектральных или корреляционных свойств сигнала. Адаптивные кодеры (медленного действия) включают вспомогательные схемы для оценки параметров, требуемых для получения локальной оптимальной производительности. Эти вспомогательные цепи периодически программируют модификации для предсказания параметров цепи и таким образом избегают рассогласования предсказания. Комитет CCITT (International Telegraph and Telephone Consultative Committee — Международный консультативный комитет по телеграфии и телефонии, МККТТ) в качестве стандарта качественной телефонной связи выбрал адаптивную дифференциальную импульсно-кодовую модуляцию (Adaptive Differential Pulse Code Modulation — ADPCM) со скоростью 32 Кбит/с. Это дает экономию скорости передачи бит 2:1 по сравнению с 64 Кбит/с схемы РСМ с логарифмическим сжатием.
13.4.1. Прямая адаптация
В алгоритмах прямой адаптации входные данные, которые должны быть закодированы, буферизуются и обрабатываются с целью получения локальных статистик, таких как первые N выборочных значений автокорреляционной функции. Корреляционное значение Rx(0) с нулевым запаздыванием является кратковременной оценкой
дисперсии. Эта оценка используется для согласования автоматической регулировки усиления с целью получения оптимального согласования масштабированного входного сигнала с динамической областью устройства квантования. Этот процесс обозначается “AQF” от “adaptive quantization forward control” — контроль прямым адаптивным квантованием. Остающиеся N - 1 корреляционных оценок используются для получения новых коэффициентов для фильтра с предсказанием. Этот процесс называется контролем прямым адаптивным предсказанием (adaptive prediction forward — APF). На рис. 13.30 изображена эта форма адаптивного алгоритма. Это расширение структуры, представленной на рис. 13.20. Здесь предсказывающие коэффициенты выводятся из входных данных, теперь называемых побочной информацией (side information). Они должны быть переданы вместе с ошибками предсказания с кодера на декодер. Скорость изменения этих адаптивных коэффициентов связана со временем, в течение которого входной сигнал может считаться локально стационарным. Например, речь, вызываемая механическим смещением речевых артикуляторов (язык, губы, зубы и т.д.), не может изменять характеристики быстрее, чем 10 или 20 раз за секунду. Это дает интервал обновления от 50 до 100 мс. Использование арифметически простых, но субоптимальных алгоритмов оценивания для вычисления локальных параметров фильтра делает необходимым более высокую скорость изменения. Для вычисления параметров 10-12-отводного фильтра принят интервал изменения 20 мс. На 10-отводных фильтрах можно получить усиление предсказания от 10 до 16 дБ, если используется адаптация с прямой связью и кодеры с предсказанием [13].
Рис. 13.30. Прямое адаптивное предсказание и кодирование квантования |
13.4.2. Синтетическое/аналитическое кодирование
Изучаемые до сих пор схемы кодирования можно назвать кодерами формы сигналов. Они создают аппроксимации входных сигналов, минимизирующие некоторую меру расстояния между сигналом и аппроксимацией. Эти технологии являются общими и могут применяться к любому источнику сигнала. С другой стороны, синтетические/аналитические кодеры являются сильно сигнально-зависимыми. В частности, они созданы в основном для речевых сигналов. Эти кодеры играют на том, что слуховой механизм реагирует на амплитудное содержание кратковременного спектра сигнала, но при этом почти нечувствителен к его фазовой струк
туре. Таким образом, этот класс кодеров формирует восстановленный сигнал, аппроксимирующий амплитуду и изменяющуюся во времени характеристику последовательности кратковременного спектра сигнала, но не делает попыток сохранить его относительную фазу.
Спектральные характеристики речи кажутся стационарными в течение порядка 20-50 мс. Существует множество технологий, которые анализируют спектральные характеристики голоса каждые 20 мс и используют результаты 'этого анализа для синтеза сигнала, дающего тот же кратковременный спектр мощности. Некоторые методы применяют модель механизма генерации речи, для которого параметры модели должны быть оценены с частотой обновления. Этот тип кодера наилучшим образом представлен в своих различных формах как линейный кодер с предсказанием (linear predictive coder — LPC). Разновидности кодеров LPC оперируют сигналом с помощью комбинаций спектральных модификаций и временных делений, которые, используя побочную информацию, сокращают количество временных выборок, требуемых для правильного воссоздания исходного спектра. Общим для всех синтетических/аналитических кодеров, используемых для речевых сигналов, является отсутствие необходимости в том, чтобы голосовой сигнал “выглядел” как оригинальный; достаточно, чтобы он “звучал” подобно ему.
13.4.2.1. Линейное кодирование с предсказанием
Адаптивные предсказатели, описанные в разделе 13.3.2, были созданы для предсказания или создания хороших оценок входного сигнала. В адаптивной форме предсказываемые коэффициенты вычисляются как побочная информация на основе периодического изучения входных данных. Затем разность между входом и предсказанием передается получателю для разрешения ошибки предсказания. Линейные кодеры с предсказанием (linear predictive coder — LPC) являются естественным расширением JV-отводных кодеров с предсказанием. Если коэффициенты фильтра периодически вычисляются с помощью оптимального алгоритма, предсказание является настолько хорошим, что (в основном) информации об ошибке предсказания, которую нужно передавать приемнику, не существует. Вместо того чтобы передавать эти ошибки предсказания, система LPC передает коэффициенты фильтра и озвученное/неозвученное руководство к действию для фильтра. Таким образом, единственными данными, посланными в LPC, является высококачественная побочная информация классического адаптивного алгоритма. Модель LPC для синтеза голоса изображена на рис. 13.31. Кодеры LPC представляют собой ядро из смешанных кодеров, которое включает в себя кодер и управляющий генератор в контуре анализа через синтез, предназначенном для минимизации разности между входным и синтезированным сигналами. В сотовых телефонах для получения качественной связи со скоростью передачи данных ниже 9,6 Кбит/с используются кодеры PRE (Regular-Pulse Excited — активация регулярными импульсами) и CELP (Codebook-Excited Linear Predictive — линейное предсказание, активируемое кодовой книгой). В системе GSM (Global Systems for Mobile — глобальная система мобильной связи) используется сжатие RPE, тогда как для мобильных телефонных систем, созданных согласно стандарту IS-95 относительно множественного доступа с кодовым разделением каналов (code division multiple access — CDMA), применяется вариант CELP. Дополнительный материал по CELP представлен в разделе 13.8.1.3.
Эта модель, использующая 12-отводный синтезатор речи, нашла применение в детских говорящих играх. Дальнейшее рассмотрение методов LPC, используемых для речи, приводится в разделе 13.8.1.
Кодер Декодер х(п) ’ коэффициенты LPC и параметры активации каждые 20 мс Рис. 13.31. Блочная диаграмма: моделирование речи с помощью линейного кодера с предсказанием |
13.5. Блочное кодирование
Изучаемые до сих пор устройства квантования были скалярными по своей природе, поскольку они образовывали единственную выходную выборку, основанную на настоящей входной выборке и (возможно) N предшествующих выходных выборках. С другой стороны, блочные кодеры образуют вектор выходных выборок, основанный на настоящей и N предшествующих входных выборках. Эффективность кодирования (coding gain) сигнала представляет собой отношение входного SNR кодера к выходному. Если дисперсии шума на входе и выходе равны, эта эффективность просто представляет собой отношение входной дисперсии сигнала к выходной. Из данного отношения следует, что каждый бит разности между числом входных бит на выборку и средним числом выходных бит на выборку равносилен изменению эффективности на 6 дБ. Блочные кодеры могут давать впечатляющую эффективность кодирования. В среднем они могут представлять последовательности, квантованные по 8 бит, всего с 1 или 2 бит на выборку [8]. Технология блочного кодирования меняется, но общим является отображение входной последовательности в альтернативную систему координат. Это может быть отображение в подпространство большего пространства, так что отображение может быть необратимым [8]. В качестве альтернативы может быть использована информационно-зависимая схема редактирования для идентификации подпространства отображения, из которого получены квантованные данные. Технологии блочного кодирования часто классифицируются по своим схемам отображения, которые включают, например, векторные устройства квантования, кодеры различных ортогональных преобразований, кодеры с разделением по каналам, такие как кодер с многополосным кодированием. Блочные кодеры далее описываются через свои алгоритмические структуры, такие как кодовая книга, дерево, решетка, дискретное преобразование Фурье, дискретное косинус-преобразование, дискретное преобразование Уолша-
Адамара (Walsh-Hadamard), дискретное преобразование Карунена-Лоэва (Karhunen- Loeve) и кодеры с блоком квадратурных зеркальных фильтров. Итак, изучим некоторые схемы блочного кодирования.
13.5.1. Векторное квантование
Векторные устройства квантования представляют собой обобщение общепринятых скалярных устройств квантования. При скалярном квантовании для представления входной выборки скалярное значение выбирается из конечного множества возможных значений. Значение выбирается близким (в некотором смысле) к выборке, которую оно представляет. Мерой точности являются различные взвешенные среднеквадратические меры, которые поддерживают интуитивную концепцию расстояния в терминах обычной векторной длины. Обобщая, имеем, что в векторном квантовании вектор выбирается из конечного перечня возможных векторов, представляющих входной вектор выборки. Вектор выборки является близким (в некотором смысле) к вектору, который он представляет.
Каждый входной вектор может быть представлен точкой в N-мерном пространстве. Устройство квантования определяется с помощью деления этого пространства на множество неперекрывающихся объемов [14]. Эти объемы называются интервалами, полигонами и политопами, соответственно, для одно-, двух- и N-мерных векторных пространств. Задача векторного квантующего устройства состоит в определении объема, в котором расположен входной вектор. Выходом оптимального квантующего устройства является вектор, определяющий центр тяжести этого объема. Как и в одномерном квантующем устройстве, среднеквадратическая ошибка зависит от расположения границы деления и многомерной функции плотности вероятности входного вектора.
Описание векторного устройства квантования может рассматриваться как две точные задачи. Первая — это задача создания кода. Она связана с созданием многомерного объема квантования (или деления) и выбором допустимых выходных последовательностей. Вторая задача состоит в использовании кода и связана с поиском определенного объема при данном делении, который соответствует (согласно некоторому критерию точности) наилучшему описанию источника. Форма алгоритма, выбранного для контроля сложности кодирования и декодирования, может объединять две задачи — деление и поиск. Стандартными методами векторного кодирования являются алгоритмы кодовых книг, древовидные и решетчатые алгоритмы кодирования [15, 16].
13.5.1.1. Кодовые книги, древовидные и решетчатые кодеры
Кодеры, использующие кодовые книги, — это, по сути, реализация алгоритмов поиска в таблице. Перечень возможных шаблонов (кодовых слов) внесен в память кодовой книги. Каждый шаблон снабжен адресом или точечным индексом. Программа кодирования ищет среди шаблонов тот, что расположен ближе всего к входному шаблону, и передает получателю адрес, сообщающий, где этот шаблон может быть найден в его кодовой книге. Древовидные и решетчатые кодеры являются последовательными. Таким образом, допустимые кодовые слова кода не могут выбираться независимо, они должны иметь структуру, которой можно управлять с помощью узловых точек. Это подобно структуре последовательных алгоритмов обнаружения-коррекции ошибок, которые обходят граф при образовании ветвящейся весовой аппроксимации входной последовательности (см. раздел 6.5.1). Древовидный граф подвержен экспоненциальному росту памяти при увеличении размерности или глубины. Решетчатый граф снижает проблему размерности, поскольку позволяет одновременно отслеживать выбранные траектории и связанные с ними траекторно-весовые метрики, называемые интенсивностью (см. раздел 6.3.3).
13.5.1.2. Совокупность кода
Кодовые векторы, внесенные в кодовую книгу, дерево или решетку, являются подобными или типичными векторами. Первый этап создания кода, в котором определяются вероятные кодовые векторы, называется заселением кода. Классические методы определения совокупности кодов есть детерминированными, стохастическими и итеративными. Детерминированная совокупность является перечнем предопределенных возможных выходов, основанных на простом субоптимальном или принятом пользователем критерии точности или на простом алгоритме декодирования. Примером детерминированного метода может служить кодирование выборок в трехмерном пространстве красного, зеленого и синего (RGB) компонентов цветного телевизионного сигнала. Для глаза не характерна одинаковая разрешающая способность для каждого цвета, так что кодирование может быть применено независимо к каждому цвету, чтобы отразить эту особенность восприимчивости. Результирующими объемами квантования могут быть прямоугольные параллелепипеды. Проблемой при независимом квантовании является то, что образы видны не в этой системе координат, а в координатах яркости, оттенка и насыщенности. Например, черно-белая фотография использует только координату яркости. Таким образом, независимо квантованные координаты RGB не приводят к уменьшению объема воспринимаемого пользователем искажения данного числа бит. Чтобы получить уменьшенное искажение, квантующие устройства должны разделить свое пространство на области, которые отражают деление в альтернативном пространстве. В качестве альтернативы, квантование может производиться независимо в альтернативном пространстве с использованием преобразующего кодирования, изучаемого в разделе 13.6. Детерминированное кодирование является наиболее простым для реализации, но дает наименьшую эффективность кодирования (наименьшее сокращение в скорости передачи бит при данном SNR).
Стохастическая совокупность должна выбираться на основании предполагаемой функции плотности вероятности входных выборок. Итеративные решения для оптимальных делений существуют и могут быть определены для любых предполагаемых функций плотности вероятности. Общие выборки моделируются с помощью предполагаемых функций плотности вероятности. При отсутствии таких функций могут использоваться итеративные методы, основанные на большой совокупности последовательностей испытаний, для получения разбиения и выходной совокупности. Последовательности испытаний могут включать в себя десятки тысяч входных выборок.
13.5.1.3. Поиск
При данном входном векторе и заселенной кодовой книге, дереве или решетке, алгоритм кодера должен производить поиск для определения наиболее адекватного векторного представителя. Исчерпывающий поиск среди всех возможных представителей будет гарантировать наилучшее отображение. Работа кодера улучшается для пространств большей размерности, но это приводит к росту сложности. Исчерпывающий поиск в пространстве большей размерности может быть весьма трудоемким. Альтернатива — следовать неисчерпывающей, субоптимальной схеме поиска с приемлемо малыми ухудшениями формы оптимальной траектории. Вообще, при выборе алгорит
мов поиска основными аргументами часто являются требования памяти и вычислительной сложности. Примеры алгоритмов поиска включают в себя алгоритмы единичной траектории (ветвь наилучшего выживания), алгоритмы множественной траектории и двоичные (метод последовательной аппроксимации) алгоритмы кодовой книги. Большинство алгоритмов поиска делают попытку определить и отбросить нежелательные модели без проверки всей модели.
13.6. Преобразующее кодирование
В разделе 13.5.1 изучались векторные устройства квантования в терминах множества вероятных моделей и технологий для определения одной модели во множестве, наиболее близком к входной модели. Одной из мер качества аппроксимации является взвешенная среднеквадратическая ошибка.
</(Х,Х) = (Х-Х)В(Х)(Х-Х)г, (13.76)
где В(Х) — это весовая матрица, а X7— транспонированный вектор X. Минимизация может быть вычислительно проще, если весовая матрица является диагональной. Диагональная весовая матрица дает координатное множество с нарушенной связью (некоррелированное), так что ошибка минимизации вследствие квантования может находиться независимо по каждой координате.
Таким образом, преобразующее кодирование включает следующую последовательность операций, которые изображены на рис. 13.32.
Преобразованный /.-компонентный /V-компонентный вектор, вектор расширенный нулевым вектором Рис. 13.32. Блочная диаграмма: преобразующее кодирование |
1. К входному вектору применяется обратимое преобразование.
2. Коэффициенты преобразования квантуются.
3. Квантованные коэффициенты передаются и получаются.
4. Преобразование обращается с использованием квантованных коэффициентов.
Отметим, что при преобразовании не выполняется никакого кодирования источника; просто допускается более удобное описание вектора сигнала, которое позволяет легче использовать кодирование источника. Задача преобразования состоит в отображении коррелированной входной последовательности в другую систему координат, в которой координаты имеют меньшую корреляцию. Напомним, что это в точности представляет собой задачу, выполняемую кодером с предсказанием. Кодирование источника происходит посредством присвоения битового значения различным коэффициентам преобразования. Как часть этого присвоения, коэффициенты могут быть разделены на подмножества, которые квантуются с помощью различного числа бит, но не с помощью различных размеров шага квантования. Это присвоение отражает динамическую область (дисперсию) каждого коэффициента и может быть взвешено мерой, отражающей важность (относительно человеческого восприятия) элемента, переносимого каждым коэффициентом [17]. Например, подмножество коэффициентов может быть сведено к нулевой амплитуде или может быть квантовано с помощью 1 или 2 бит.
Преобразование может быть независимым от вектора данных. Примерами таких преобразований являются дискретное преобразование Фурье (discrete Fourier transform — DFT, ДПФ), дискретное преобразование Уолша-Адамара (discrete Walsh-Hadamar transform — DWHT), дискретное косинус-преобразование (discrete cosine transform — DCT, ДКП) и дискретное наклонное преобразование (discrete slant transform — DST). Преобразование может быть также получено из вектора данных, как это делается в дискретном преобразовании Карунена-Лоэва (discrete Karhunen-Loeve transform — DKLT), иногда называемом преобразованием основного компонента (principal component transform — РСТ) [18]. Независимые отданных преобразования являются самыми простыми в реализации, но они не так хороши, как информационно-зависимые. Зачастую вычислительная простота является достаточным оправданием для использования независящих от данных преобразований. При хорошем субоптимальном преобразовании потери эффективности кодирования незначительны (как правило, меньше 2 дБ), и обычно при демонстрации рабочих характеристик упоминается ухудшение качества.
13.6.1. Квантование для преобразующего кодирования
Преобразующие кодеры обычно называются спектральными, поскольку сигнал описывается через свое спектральное разложение (в выбранном базисном множестве). Спектральные члены вычисляются для неперекрывающихся последовательных блоков входных данных. Таким образом, выход преобразующего кодера может рассматриваться как множество временных рядов, один ряд для каждого спектрального члена. Дисперсия каждого ряда может быть определена, и каждый ряд может быть квантован с использованием разного числа бит. Допуская независимое квантование каждого коэффициента преобразования, имеем возможность распределения фиксированного числа бит среди коэффициентов преобразования для получения минимальной ошибки квантования.
13.6.2. Многополосное кодирование
Преобразующие кодеры в разделе 13.6 были описаны как выполняющие деление входного сигнала на множество медленно изменяющихся временных рядов, каждый из которых связан с определенным базисным вектором преобразования. Спектральные члены (скалярные произведения данных с базисными векторами) вычисляются с помощью множества скалярных произведений. Множество скалярных произведений может быть вычислено с помощью множества фильтров с конечной импульсной характеристикой [19]. С этой целью преобразующий кодер может рассматриваться как выполняющий разделение полосы частот входных данных на отдельные каналы. Обобщая, получим, что многополосный кодер, который выполняет спектральное разделение полосы частот на отдельные каналы с помощью набора непрерывных узкополосных фильтров, может рассматриваться в качестве частного случая преобразующего кодера. (Типичный многополосный кодер изображен на рис. 13.33.)
Выборка Т Переключение |
'фильтр 2 Спектральные характеристики фильтров Фильтр 3 f 1 h h U h Рис. 13.33. Многополосное кодирование • |
Спектральное разложение данных (как и фильтрование) допускает различное формирование класса специальных базисных множеств (т.е. спектральных фильтров), в частности базисных множеств, которые отражают приемлемые предпочтения пользователя и модели источника. Например, шум квантования, сгенерированный в полосе частот с большой дисперсией, будет ограничен этой полосой частот; он не будет проникать в соседнюю полосу частот, имеющую низкую дисперсию и, следовательно, уязвимую для низкоуровневых сигналов, которые замаскированы шумом. Имеем также выбор формирующих фильтров с равными или неравными полосами частот (рис. 13.33). Таким образом, можно независимо каждой подполосе приписать выборочную частоту, соответствующую ее ширине полосы частот, и число бит квантования, соответствующее ее дисперсии. Для сравнения, в общепринятом преобразующем кодировании амплитуда каждого базисного вектора выбирается с одинаковой частотой.
Многополосный кодер может быть создан как трансмультиплексор (преобразователь вида уплотнения). Здесь входной сигнал рассматривается в виде составленного из множества базисных функций, моделированных как независимые подканалы узкой полосы частот. Кодер разделяет входной сигнал на множество каналов с низкой скоростью передачи данных, уплотненных с временным разделением (time-division multiplexing — TDM). После квантования и передачи декодер обращает процесс фильтрации и повторной выборки, преобразуя каналы TDM обратно в исходный сигнал. При классическом подходе к этому процессу можно использовать множество узкополосных фильтров с этапами смешивания, фильтрации нижних частот и дискретизации на пониженной частоте (часто называемой децимацией, или прореживанием). Эта операция фильтрации сокращает входную полосу частот до выбранной полосы частот канала и повторно выбирает сигнал до самой низкой частоты, что позволяет избежать наложения разделенных полос частот данных. В приемнике производится обратный процесс. Разделенные на полосы данные для увеличения их частоты до желаемой частоты дискретизации проходят через интерполирующие фильтры и смешиваются обратно до их соответствующего спектрального положения. Чтобы создать исходный смешанный сигнал, они объединяются. Для кодирования речи или, в более общем смысле, для сигналов, которые связаны с механическим резонансом, желательны группы фильтров с неравными центральными частотами и неравными полосами частот. Такие фильтры называются пропорциональными наборами фильтров. Эти фильтры имеют логарифмически расположенные центральные частоты и полосы частот, пропорциональные центральным частотам. При рассмотрении на логарифмической шкале такое пропорциональное размещение выглядит как равномерное расположение полос частот и отражает спектральные свойства многих физических акустических источников.
13.7. Кодирование источника для цифровых данных
Кодирование с целью сокращения избыточности источника данных обычно влечет за собой выбор эффективного двоичного представления этого источника. Часто это требует замены двоичного представления символов источника альтернативным представлением. Замена обычно является временной и производится, для того чтобы достичь экономии при запоминании или передаче символов дискретного источника. Двоичный код, присвоенный каждому символу источника, должен удовлетворять определенным ограничениям, чтобы позволить обращение замены. К тому же код может быть далее ограничен спецификацией системы, например ограничениями памяти и простотой реализации.
Мы настолько привыкли к использованию двоичных кодов для представления символов источника, что можем забыть о том, что это всего лишь один из вариантов присвоения. Наиболее общим примером этой процедуры является двоичное присвоение количественным числительным (даже не будем рассматривать отрицательные числа). Можно прямо переводить в двоичную систему счисления, двоичные коды восьмеричных чисел, двоичные коды десятичных чисел, двоичные коды шестнадцатеричных чисел, десятичные коды “два из пяти”, десятичные коды с избытком три и т.д. В этом примере при выборе соответствия учитывается простота вычисления, определения ошибки, простота представления или удобство кодирования. Для определенной задачи сжатия данных основной целью является сокращение количества бит.
Дата добавления: 2015-10-28; просмотров: 83 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Основы теории принятая статистических решений 1051 72 страница | | | Основы теории принятая статистических решений 1051 74 страница |