Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Система комплемента

Введение в предмет | История иммунологии | Резистентность к инфекциям и продуктам повреждения тканей. Физиологические защитные системы организма. Место иммунитета | Определение иммунитета. «Формула» иммунного ответа | Лимфоидная ткань | Лимфатические узлы | Структура молекул иммуноглобулинов | Биохимические свойства иммуноглобулинов | Гены иммуноглобулинов | Изотипы, аллотипы и идиотипы иммуноглобулинов |


Читайте также:
  1. F) Новый Линней, или О систематике
  2. II. Систематизация знаний вокруг основных понятий раздела.
  3. III.1 Система нейтрализации промстоков.
  4. III.2 Система сбора промстоков горючего.
  5. VIII. ТЕОРЕТИКО-ИНФОРМАЦИОННАЯ КОНЦЕПЦИЯ КРИПТОЗАЩИТЫ СООБЩЕНИЙ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ
  6. XVIII. Система управления цивилизацией.
  7. Автономная система питания

Комплемент обнаружен на переломе XIX и XX веков (Бюхнер, Борде, Эрлих) в виде гипотетического фактора, присутствующего в нормальной сыворотке крови, инактивируемого прогреванием сыворотки при 56 ° C, обладающего свойствами опсонизировать бактерии для фагоцитоза и содействовать лизису бактерий в присутствии антибактериальных АТ, т.е. это «что-то» дополняет (complementer) АТ в ходе лизиса и фагоцитоза бактерий.

В дальнейшем выяснили, что комплемент — это система сывороточных белков и нескольких белков клеточных мембран. Девять первых открытых белков системы комплемента обозначили буквой «С» (по первой букве слова «complement») с цифрой: C1, C2, C3, C4, C5, C6, C7, C8, C9. В процессе реализации своей биологической активности первые пять белков комплемента расщепляются в определённой последовательности на активные действующие продукты «запланированного» расщепления. Эти продукты обозначают «С» с номером и малой латинской буквой, например C1q, C5a, C2b. Букву «b» присваивают большему по размеру фрагменту, букву «а» — малому фрагменту. Часть из компонентов комплемента является протеазами, часть выполняет другие функции: связывание с микроорганизмами и мембранами клеток, связывание с комплексами «АТ–Аг», активация тучных клеток и, следовательно, сосудистых реакций воспаления, перфорация мембран бактериальных клеток. Остальные компоненты обозначают каждый своей аббревиатурой (табл. 3.2).

Таблица 3.2. Компоненты комплемента, их функции и обозначения

Функции Обозначения
Связывание с комплексом Аг–АТ C1q
Связывание с мембраной бактерий и опсонизация к фагоцитозу C4b C3b
Протеазы, активирующие другие компоненты системы путём расщепления C1r C1s C2b Bb D
Медиаторы воспаления (дегрануляция тучных клеток, сосудистые реакции) C5a C3a C4a
Комплекс мембраноатакующих белков (перфорация мембраны клеток–мишеней) C5b C6 C7 C8 C9
Рц для белков комплемента на клетках организма CR1 CR2 CR3 CR4 C1qR
Комплементрегулирующие белки (ингибиторы активации, блокаторы активности) Clinh C4bp CR1 MCP DAF H I P CD59

Всего вместе с ингибиторами и регуляторами в табл. 3.2 перечислено 30 компонентов системы комплемента.

· В и D — белки системы комплемента, обнаруженные позже компонентов под аббревиатурой «С», и получившие «имя» по соседним с «С» буквам латинского алфавита. Номера при букве «С» присваивали по мере обнаружения конкретных белков, и их порядок (1, 2, 3 и т.д.) не соответствует физиологической очередности вступления в действие в процессе активации всей системы.

· CR — complement receptor — это названия Рц (которых как минимум 5), связывающих определённые белки комплемента на мембране собственных клеток организма (фагоцитов, B–лимфоцитов, небольшой части T–лимфоцитов и в меньшей степени других клеток).

· Clinh (C1–inhibitor) — ингибитор компонента C1.

· MCP — membrane–associated cofactor of proteolysis — мембранный белок, связывающий C3b, что делает C3b доступным для деградации протеазой — фактором I.

· DAF — decay accelerating factor — белок мембраны клеток млекопитающих, ускоряющий деградацию (инактивацию) компонента C2b.

· H — фактор H — сывороточная протеаза, деградирующая C3b.

· I — фактор I — протеаза, деградирующая компоненты C3b и C4b.

· P — фактор P (или пропердин) — стабилизатор активного комплекса C3b/Вb.

· CD59 — мембраный белок, препятствующий вызванному комплементом лизису собственных клеток.

Подробная характеристика белков комплемента приведена в табл. 3.3.

Таблица 3.3. Система комплемента

Компонент Мол. масса, ´1000 Концентрация в сыворотке крови, мкг/мл Число полипептидных цепей до активации Ферментативная активность после активации (субстрат) Локализация гена в хромосоме
Компоненты классического пути
C1q     18 (6a+6b+6g) 1р34–1р36
C1s     2 (гомодимер) +(C4, C2) 12р13
C4     3 (a + b + g) 6р21.3
C2       +(C3) 6р21.3
Компоненты альтернативного пути
C3     2 (a + b)  
Фактор D       +(FB) Неизвестно
Фактор В       +(C3) 6р21.3
Терминальные компоненты комплекса атаки на мембрану
C5     2 (a + b) Нет 9q32–9q34
C6       Нет 5h
C7       Нет 5h
C8     (a + b + g) Нет 1р34 (a и b), 9q(g)
C9       Нет 5p13
Растворимые факторы контроля комплемента в плазме
C1–ингибитор       Нет 11p11 — 11q13
C4–связывающий белок     8(7a + 1b) Нет 1q
Фактор H       Нет 1q
Фактор I     (a + b) +(C4b, C3b) 4q24–26
Инактиватор анафилатоксинов     6(2a + 2b + 2g) +(C3a, C4a, C5a) Неизвестно
Пропердин 106–112   2; 3 или 4 (одинаковых) Нет Хр11.23
S–протеин       Нет 17q11
SP–40       Нет 8р21

В норме, когда внутренняя среда организма «стерильна» и нет патологического распада собственных тканей, система комплемента находится в «спящем состоянии», т.е. уровень спонтанной активности без «спроса» на нее невысок. «Спрос» на работу системы комплемента возникает при появлении во внутренней среде определённых раздражителей, а именно микробных продуктов. Известно 3 пути активации системы комплемента, называемых классическим, альтернативным и лектиновым.

Альтернативный путь активации инициируется непосредственно клетками микроорганизмов.

Компоненты комплемента, которые, будучи в активной форме, являются протеазами и работают как с субстратами с другими компонентами комплемента, называют конвертазами с обозначением объекта конверсии (т.е. превращения). Например, C3–конвертазы — это протеазы, способные расщеплять белок C3 на функционально активные компоненты C3b и C3a.

Опишем альтернативный путь активации комплемента микробными клетками.

В сыворотке крови всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 белка с образованием C3b и C3a. Из всех белков системы комплемента в сыворотке крови больше всего именно C3: его концентрация в норме составляет 1,2 мг/мл. Компонент C3b способен ковалентно связываться с поверхностными молекулами не всех, но некоторых микроорганизмов. Для C3b есть Рц на фагоцитах, и C3b, таким образом, является самым «энергичным» опсонином в системе комплемента.

Кроме того, связанный с поверхностью микробных клеток C3b активирует другие компоненты системы следующим образом: C3b связывает фактор В (который, кстати, структурно и функционально гомологичен белку C2). Будучи связанным, фактор В становится субстратом для сывороточной сериновой протеазы — фактора D. Протеаза расщепляет белок В на фрагменты Ва и Bb. Bb в свою очередь является активной протеазой. Bb остаётся связанным с C3b на поверхности микроба, образуя активный комплекс C3b/Bb, который по функциональной активности есть C3–конвертаза — самая значимая при альтернативном пути активации системы комплемента. Комплекс C3b/Bb является структурным и функциональным гомологом главной C3–конвертазы классического пути — C4b/C2b. Гены гомологичных белков C2 и фактора В локализованы рядом в области MHC–III. В сыворотке крови млекопитающих есть белок, стабилизирующий комплекс C3b/Bb — это пропердин, или фактор Р.

В результате нарабатывается много C3b: одна единица C3–конвертазы «высаживает» на поверхность микробной клетки около 1000 молекул C3b, который выполняет противомикробную работу. Кроме названной выше опсонизации для фагоцитоза, комплекс C3b/Bb является активной C5–конвертазой, т.е. расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (самый сильный) и C3a служат медиаторами воспалительной реакции, т.е. создают условия для экстравазации из сосудов в очаг жидкости и клеток крови. Эти компоненты называют анафилатоксинами комплемента. Для них существуют специальные Рц, по крайней мере на тучных клетках (выбрасывающих в качестве реакции содержимое своих гранул) и на гладких мышцах (реагирующих сокращением). C5a действует также прямо на нейтрофилы и моноциты (т.е. фагоциты), повышая их адгезию к стенке кровеносного сосуда, их экстравазацию и фагоцитарную активность. Кроме того, C5a вызывает повышение экспрессии на фагоцитах Рц CR1 и CR3.

С C5b начинаются реакции белков комплемента C6, C7, C8 и C9, коллективно получивших название «мембраноатакующий комплекс», посколько эти реакции завершаются формированием неспадающихся пор в мембране микробных клеток (перфорацией мембраны) и, как следствие, лизисом микробных клеток. Одна молекула C5b связывает одну молекулу C6. Образовавшийся комплекс C5b/C6 присоединяет одну молекулу C7. У молекулы C7 есть гидрофобный домен, через который весь комплекс C5b/C6/C7 встраивается в фосфолипидный бислой мембраны микробной клетки. К этому комплексу своими гидрофобными доменами пристраиваются белки C8 и C9. C8 — комплекс двух белков: C8b присоединяется к C5b, а C8ag встраивается в фосфолипидный бислой. Будучи встроенным, C8ag катализирует полимеризацию 10–16 молекул C9. Данный полимер и формирует неспадающуюся пору в мембране диаметром около 10 нм.

В реальной защите от инфекций этот, казалось бы, мощный деструктивный механизм имеет ограниченные возможности. При генетических дефектах в компонентах C5–C9 единственный фенотипический дефект в противомикробной защите у человека — повышенная восприимчивость к инфекции Neisseria spp, вызывающей такие заболевания, как гонорея и бактериальный менингит.

Классический путь активации комплемента инициируется комплексами Аг–АТ. На молекулах IgM, IgG3 и в меньшей мере IgG1 есть специальные реакционно–способные места, которые после формирования комплекса Аг–АТ способны связывать компонент C1 комплемента, а именно субкомпонент C1q. Молекула C1 состоит из 8 СЕ, 6 из которых одинаковые: C1q (имеющий глобулярную головку и коллагеноподобный хвост), по одной C1r и C1s. Реакция связывания C1q с иммуноглобулинами не происходит в растворе, но требует концентрации на твёрдой фазе — на поверхности микробных клеток. Каждая головка C1q вступает в связь с одним Fc–участком молекулы иммуноглобулина. Активация молекулы C1 требует связывания более двух головок C1q. Ферментом (протеаза) является C1r. Будучи активированной, C1r отщепляет C1s, которая является активной сериновой протеазой. Протеаза C1s расщепляет компоненты системы — сначала C4, C2. C4b способен ковалентно связываться с поверхностью микробных клеток (важно, что не собственных эукариотических клеток) и там присоединять к себе C2. Здесь C2 расщепляется той же протеазой C1s. Большие фрагменты C4b и C2b объединяются и становятся главной C3–конвертазой классического пути — комплексом C4b/C2b. В этом комплексе протеазной активностью обладает C2b. C3–конвертаза нарабатывает большие количества C3b. Дальнейшие процессы по механизму совпадают с процессами альтернативного пути активации системы комплемента. Кстати, классический и альтернативный пути активации действуют параллельно, более того, амплифицируя (усиливая) друг друга, а не «или, или».

Рассмотрим Рц для компонентов комплемента на клетках (CR — complement receptors) организма и их функциональные роли. Известно 5 типов CR (табл. 3.4).

CR1, экспрессированный на фагоцитах (макрофагах, нейтрофилах), связывает C3b. Однако только одно это связывание не стимулирует фагоцитоз, но оказывает пермиссивное действие при наличии других стимулов к фагоцитозу — связывание комплексов Аг–АТ через Fcg–Рц или стимуляций g–ИФН (продуктом иммунных T–лимфоцитов).

Таблица 3.4. Клеточные рецепторы для компонентов комплемента

Рц (мол. масса ´1000, хромосома) Связываемый компонент комплемента На каких клетках экспрессирован Функциональные последствия связывания
CR1 (CD35) (250, 222, 190, 160; lq32) C3b, C4b, iC3b Моноциты, макрофаги, полиморфноядерные лейкоциты. B–лимфоциты, фолликулярные дендритные клетки. Эритроциты Опсонизированный фагоцитоз. Активация B–лимфоцитов. Транспорт иммунных комплексов на эритроцитах. Способствуют разрушению C3b и C4b
CR2 (CD21) (145; lq32) C3d, C3dg, C3bi, Вирус Эпштейна–Барр (EBV) B–лимфоциты. Фолликулярные дендритные клетки (ФДК) Компонент корецепторного комплекса для Аг на B–лимфоцитах. Рц для EBV
CR3 (CD11b/CD18) (165/95; 16p/21q) C3bi Моноциты, макрофаги, полиморфно-ядерные лейкоциты. ФДК Опсонизированный фагоцитоз. Нефагоцитируемое связывание комплексов Аг–АТ на ФДК
CR4 (CD11c/CD18) C3bi Моноциты, макрофаги, полиморфноядерные лейкоциты Опсонизированный фагоцитоз
C1qR C1q (коллагеноподобная часть) B–лимфоциты. Макрофаги, моноциты. Тромбоциты. Эндотелий Связывание иммунных комплексов
C5a–Рц (50) C5a Макрофаги. Тучные клетки Активация макрофагов. Дегрануляция и активация тучных клеток

CR1 есть на эритроцитах. После многих инфекций в крови накапливается немало растворимых иммунных комплексов. Их пребывание в циркуляции неблагоприятно для стенок сосудов. Активные компоненты комплемента C4b и C3b ковалентно связывают растворимые иммунные комплексы и через CR1 привязывают их к эритроцитам, которые уносят их с собой к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При этом макрофаг «снимает» иммунный комплекс с эритроцита, не повреждая сам эритроцит. Если этот механизм клиренса крови от иммунных комплексов оказывается недостаточным, то «неубранные» комплексы выпадают в осадок. Этот процесс особенно заметен в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), где он вызывает патологический синдром гломерулонефрита.

C5a–Рц состоит из 7 доменов, пенетрирующих мембрану клетки. Такая структура характерна для Рц, ассоциированных с так называемыми G–белками (белками, способными связывать гуаниновые нуклеотиды).

CR2, CR3 и CR4 связывают C3bi — инактивированную форму C3b, которая остаётся связанной с поверхностью микробной клетки и служит, таким образом, в качестве опсонина. Более того, в отличие от связывания активной формы C3b с CR1 само по себе связывание C3bi с CR3 достаточно для стимуляции фагоцитоза.

Ещё один продукт деградации C3b—C3dg связывается только с CR2. Рц CR2 является существенным корецептором B–лимфоцита. CR2 связывает C3bi и/или C3dg, и это связывание увеличивает в 100–10 тыс. раз восприимчивость B–лимфоцита к своему Аг. К сожалению, эту же мембранную молекулу — CR2 — выбрал в качестве своего Рц вирус Эпштейна–Барр (EBV) — возбудитель инфекционного мононуклеоза.

У людей с генетическими дефектами в C3 или молекулах, обеспечивающих выпадение C3b на поверхности микробных клеток, клинически имеется уязвимость ко многим внеклеточным бактериальным инфекциям.

Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента. Часть этих белков — мембранные (табл. 3.5), часть — сывороточные. Один из сывороточных регуляторов — C1–ингибитор (Clinh). Он связывает активный ферментный комплекс C1r/C1s, отрывает его от C1q, который остаётся связанным с Fc–фрагментом АТ на поверхности микробной клетки. Тем самым Clinh ограничивает время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, Clinh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте Clinh у человека имеется заболевание, называемое наследственным ангионевротическим отёком. Патогенез заболевания состоит в хронически повышенной спонтанной активации системы комплемента. Избыточное накопление, в том числе фрагментов C2a, приводит к повышенному образованию пептида-деривата C2a—C2–кинина. Этот кинин, а также избыточно образующийся брадикинин (тот же ингибитор Clinh регулирует и другие протеазы плазмы) вызывают отёки. Заболевание полностью излечивается заместительной терапией препаратом Clinh.

Таблица 3.5. Мембранные молекулы — регуляторы активности компонентов комплемента

Название Мол. масса ´1000, хромосома Специфичность На каких клетках экспрессирован
Мембранный кофакторный белок — MCP (CD46) 45–70, lq32 C3b, C3a Тромбоциты, моноциты, B– и T–лимфоциты
Фактор DAP (CD55), ускоряющий распад 70, lq32 C4b2a, C3bВb Тромбоциты, эритроциты, лейкоциты
Протектин (CD59) 20, 11р13 C5b–C8 Эритроциты, клетки почки
P150/95 (CD11B) 150(a) 95(b) iC3b Макрофаги, моноциты, нейтрофилы
Рц для C3a/C4a (CD11B) 94 (b–СЕ) + a-CE (130–180) 16p11.2 C3a, C4a Тучные клетки, гранулоциты
Рц для C5a   C5a Тучные клетки, гранулоциты, моноциты, макрофаги, тромбоциты
Рц для C3e ? C3e Нейтрофилы, моноциты

C2b инактивируется двумя белками: сывороточным C4–связывающим белком — C4BP (C4–Binding Protein) и мембранным белком DAF (Decay–Accelerating Factor — фактор, ускоряющий деградацию). Оба эти ингибитора конкурируют с C2b за связывание с C4b. В комплексе с C4BP C4b становится высокочувствительным к деградации с участием сывороточной протеазы (фактора I), расщепляющей C4b на C4c и C4d. Подобным образом два других регуляторных белка: сывороточный фактор H и мембранный CR1 — «поступают» с C3b: они вытесняют собой C2b из комплекса с C3b, делая тем самым C3b доступным для деградации фактором I. Фактор H имеет также химическое сродство для связывания с сиаловыми кислотами, которых много на поверхности клеток млекопитающих, но которых не бывает у большинства бактерий.

Ещё один регуляторный мембранный белок MCP связывает C3b и делает его доступным для деградации фактором I.

У всех регуляторных белков системы комплемента, связывающих C4b и C3b, в первичной последовательности АК присутствуют общие (консенсусные) короткие повторы, характерные именно для комплементконтролируюших белков.

Активность белков комплекса атаки на мембрану также сдерживается мембранными белками собственных клеток CD59 и DAF. Оба они связаны с мембраной клетки через фосфатидил-инозитол-гликолипид. Существует наследственное заболевание человека с дефектом именно в формировании такой фосфатидил–инозитол–гликолипидной связи — пароксизмалъная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и соответственно происходит экскреция гемоглобина почками.

Лектиновый путь активации комплемента начинается со связывания с углеводами поверхностных структур микробных клеток, а именно с остатками маннозы, такого нормального белка сыворотки крови как связывающий маннозу лектин — СМЛ. У млекопитающих имеется специальная СМЛ–ассоциированная сериновая протеаза, которая аналогично C1s классического пути катализирует активационное расщепление C4. Дальнейшие реакции лектинового пути активации те же, что и при активации по классическому пути.

3. 3. Белки острой фазы (C–реактивный белок, связывающий маннозу лектин, сурфактанты)

Белками острой фазы называют несколько белков сыворотки крови, концентрация которых значительно возрастает при патологических процессах, затрагивающих организм в целом. К белкам острой фазы относят фибриноген, СРБ, связывающий маннозу лектин (СМЛ), сурфактанты SP–A и SP–D, у грызунов — ещё сывороточный амилоид. Главное анатомическое место синтеза белков острой фазы — печень. Биохимическим сигналом для повышенного синтеза белков острой фазы служит появление в системной циркуляции цитокинов доиммунного воспаления — ИЛ–6 и опосредованно — TNFa и ИЛ–1, что бывает при тяжёлых системных воспалительных процессах.

Значительные количества этих белков появляются в крови в течение первых 2 дней развития острого процесса, когда специфических АТ ещё нет, последние смогут возникнуть лишь спустя 5–7 дней. В этот ранний период СРБ и СМЛ связывают широкий спектр микробов и опсонизируют их для фагоцитоза и/или лизиса с участием комплемента, т.е. СРБ и СМЛ являются растворимыми Рц — PRR, распознающими патогенов во внутренней среде.

Название «C–реактивный белок» (СРБ) происходит из наблюдения, что этот белок связывает стафилококки группы С. Со временем накопились сведения о том, что СРБ способен связывать в силу своих биохимических свойств ряд бактерий и «отправлять» их на «съедение» фагоцитам. Такое явление, когда связывание микроба в комплекс с неким растворимым белком обеспечивает возможность поглощения этого микроба клеткой–фагоцитом, называют опсонизацией (от лат. opsonen — делающий вкусным). Растворимые белки, способные одной своей стороной связать микроб, а второй сторонойспециальный Рц (к себе) на клетке–фагоците, называют опсонинами. У млекопитающих в сыворотке крови известно несколько различных по биохимической природе опсонинов: это СРБ, СМЛ, компонент комплемента C3 и самые многочисленные по разнообразию связываемых микробов иммуноглобулины — АТ — продукты биосинтеза B–лимфоцитов.

СРБ относят к семейству пентраксинов. Пентраксинами называют белки, молекула которых сформирована из 5 одинаковых СЕ. СРБ имеет химическое сродство к фосфорилхолину. Последний входит в состав клеточных стенок ряда бактерий и одноклеточных грибов. По этой причине СРБ способен связывать соответствующие микробные клетки. Фосфорилхолин, входящий в состав фосфолипидов мембран клеток млекопитающих, находится в такой форме, с которой СРБ не связывается. Связав бактерии, СРБ осуществляет два действия: первое — опсонизирует бактерии для фагоцитоза, и второе — активирует каскад комплемента, так как связывает надлежащим образом компонент C1q — первый инициирующий компонент классического пути активации комплемента. Таким образом, не будучи иммуноглобулином, по разрушающим микроб эффекторным механизмам СРБ действует отчасти аналогично АТ, только в отличие от АТ этот белок не вариабелен и способен связывать широкое, но ограниченное множество патогенов. СРБ связывает молекулу C1q за иное место, чем иммуноглобулины: СРБ — за коллагеноподобную часть молекулы, иммуноглобулины — за глобулярные структуры молекулы C1q. Но каскад комплемента запускается тот же самый.

Связывающий маннозу лектин (СМЛ) — кальцийзависимый сахарсвязывающий белок (лектинами по определению называют именно белки, способные с высокой аффинностью связывать углеводы). СМЛ относят к семейству коллектинов. СМЛ связывает остатки маннозы, которые экспонированы на поверхности многих микробных клеток, но экранированы, если присутствуют, в поверхностных углеводах клеток млекопитающих. СМЛ опсонизирует микробные клетки для фагоцитоза моноцитами, которые в отличие от более зрелых макрофагов ещё не экспрессируют собственный Рц для маннозы. Как ни странно, не имея гомологии в АК–последовательности, по вторичной структуре СМЛ похож на C1q. Похож он на C1q и по функции, а именно, связав микробную клетку, СМЛ приобретает способность активировать протеазы, производящие активационное расщепление C4 и C2, что инициирует каскад комплемента. Это и называют лектиновым путём активации системы комплемента.

Помимо СМЛ, к семейству коллектинов принадлежат также белки сурфактанта лёгких — SP–A и SP–D (surfactant proteins A, D). Эти белки, вероятно, имеют существенное значение в опсонизации такого лёгочного патогена как одноклеточный гриб Pneumocystis carinii.

Фагоцитоз

И.И. Мечников, занимаясь сравнительной эмбриологией и гистологией морских беспозвоночных, в 1882 г. открыл существование особого процесса в их организмах: определённые клетки, целомоциты или амебоциты, поглощали инородные частицы и в том числе микроорганизмы, попадающие во внутреннюю среду. Вокруг более крупных инородных тел эти клетки формировали отграничивающие гранулемы. Собственно открытие И.И. Мечникова состояло не в наблюдении поглощения клетками инородных частиц, а в осознании защитного значения этого процесса для всего организма, а не понимание его как пищеварительного для данной единичной клетки. Подобные процессы наблюдали и другие врачи и исследователи, в том числе в препаратах из очагов гнойного воспаления у людей, где особые белые клетки крови (лейкоциты), как амебы поглощали микроорганизмы и переваривали их внутри себя. Но принято было думать, что эти клетки болезнетворные, ибо видели их в больном месте — в очагах гнойного воспаления. Коллеги — современники И.И. Мечникова оценили его прозрение ни много ни мало как мысль гиппократовского масштаба. И.И. Мечников назвал эти клетки «пожирающими». А. Гроббен и Ф. Гейдер подсказали ему греческие корни, составившие термин «фагоциты».

Любая живая клетка, в том числе и организма млекопитающих, поглощает вещества из внешней среды через специальные каналы для метаболитов в мембране, эндоцитозом отдельных молекул, пиноцитозом. Однако фагоцитоз — это особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур.

«Профессиональными» фагоцитами у млекопитающих являются всего два типа дифференцированных клеток — нейтрофилы и макрофаги. Фагоцит обхватывает своей мембраной поглощаемый объект (бактериальные или собственные повреждённые клетки, или иное), заключает его в мембранную везикулу, которая оказывается внутри фагоцита. Такие везикулы называют фагосомами. Цель фагоцитоза — полное биохимическое расщепление до мелких метаболитов содержимого фагосомы. Для этого у фагоцита есть специальные внутриклеточные органеллы — лизосомы, содержащие набор гидролитических ферментов с оптимумом pH примерно 4,0. В клетке фагосомы сливаются с лизосомами в фаголизосому, где и происходят реакции расщепления поглощённого материала. Кроме лизосом, в фагоцитах есть специальные ферментные системы: НАДФ–Н–оксидазы, супероксиддисмутаза, NO–синтазы, которые генерируют активные формы неорганических окислителей, — перексид водорода (Н2О2), супероксид анион (О2), синглетный кислород (1O2), радикал гидроксила (OH), гипохлорид (ОСl), оксид азота (NО+). Эти агрессивные окислители работают внутри клетки, а также на определённых этапах развития воспалительной реакции секретируются во внеклеточную среду.

Нейтрофилы и моноциты созревают в костном мозге из стволовой кроветворной клетки и имеют общую промежуточную клетку–предшественницу. Нейтрофилы циркулируют в периферической крови и составляют бoльшую часть лейкоцитов крови — 60–70%, или 2,5–7,5´109 клеток в 1 л крови. В норме нейтрофилы не выходят из сосудов в периферические ткани, но они первыми «бросаются» (т.е. подвергаются экстравазации) в очаг воспаления. Моноциты, напротив, являются «транспортной формой», в крови их 5–10% от общего числа лейкоцитов. Их предназначение — стать и быть оседлыми макрофагами в периферических тканях. Макрофаги локализуются в рыхлой соединительной ткани, подстилающей все покровные ткани, а также в паренхиме органов и по ходу кровеносных сосудов. Макрофаги печени называют купферовскими клетками (звездчатые ретикулоэндотелиоциты), макрофаги мозга — микроглией, макрофаги лёгких — альвеолярными и интерстициальными.

Как фагоциты «узнают», чтo им следует фагоцитировать? На доиммунном этапе защитных реакций распознающие возможности фагоцитов ограничены. И только иммунный механизм в виде синтеза АТ «приводит» к макрофагу доступное АТ разнообразие распознаваемых Аг.

Известно 5 структур — Рц на клеточной мембране макрофагов, связывающих то, что макрофаг потенциально способен поглотить по механизму фагоцитоза.

· Рц для комплемента — CR3 (интегрин CD11b/CD18) и CR4 (интегрин CD11c/CD18). Эти интегрины мембраны макрофагов, кроме компонентов комплемента, имеют химическое сродство и, следовательно, связывают ряд бактериальных продуктов: липополисахариды, липофосфогликан Leishmania, гемагглютинин из филаментов Bordetella, поверхностные структуры дрожжевых клеток родов Candida и Histoplasma.

· На тканевых макрофагах (не на моноцитах крови) есть Рц, связывающий маннозу. Такого Рц нет на других фагоцитах — нейтрофилах.

· Молекула CD14 на макрофагах — Рц для комплексов бактериальных липополисахаридов (ЛПС) с липополисахаридсвязывающим протеином сыворотки.

· Рц для производных лигандов сиаловых кислот (углеводов, характерных для клеток млекопитающих). Их называют «scavenger receptor» — Рц для «уборки мусора» (погибающих и деградирующих собственных клеток).

· Рц для «хвостов» (Fc–фрагментов) IgG — FcgRI — Fcg–Рц 1–го типа. Это как раз место сопряжения лимфоцитарного разнообразного по Аг иммунитета с эволюционно более древним механизмом защиты — фагоцитозом. В CD–номенклатуре эту поверхностную молекулу макрофагов называют CD64, и поскольку она экспрессирована только на моноцитах/макрофагах, она является мембранным маркёром клеток этой линии дифференцировки. Подклассы IgG по силе связи с FcgRI располагаются в следующем порядке: IgG3 >IgG1 >IgG4 >IgG2.

Второй механизм сопряжения лимфоцитарного иммунитета с фагоцитами состоит в том, что на мембране фагоцитов есть молекулы — Рц для активных цитокинов, вырабатываемых иммунными лимфоцитами. Через них фагоцит воспринимает сигнал от лимфоцита, и в результате происходят существенные сдвиги во внутренней «энергетике» фагоцита. Через Рц к g–ИФН и к фактору некроза опухолей (TNF) после связывания с лигандом макрофаг претерпевает сильную активацию всей своей внутренней «биохимической машины». Через Рц для ИЛ–10 макрофаг, напротив, инактивируется. Есть на макрофагах (но не на нейтрофилах) и мембранные молекулы для контактов с комплементарными мембранными молекулами лимфоцитов, т.е. для непосредственных межклеточных взаимодействий (это CD40, B7, MHC–I/II).

Назовем ещё два маркёра моноцитов/макрофагов: это CD115 — Рц для фактора роста моноцитов M–CSF (колониестимулирующий фактор моноцитов) и CD163 (Рц гемоглобина типа скевенджер, от англ. scavenger — мусорщик).

На нейтрофилах идентифицированы эксклюзивные маркёры наружной мембраны — CD66A и CD66D. Функциональные «нагрузки» этих молекул пока неизвестны. По биохимическим свойствам они попадают в семейство так называемых раково–эмбриональных белков.

Что происходит после того, как фагоцит поглотил объект извне в виде заключенного в мембрану пузырька — фагосомы? Происходят по крайней мере три процесса: расщепление поглощённого материала внутри фагоцита, продукция и секреция в межклеточное пространство литических ферментов и окислительных радикалов, продукция и секреция цитокинов.

Первый из них — расщепление того, что фагоцитировано, до мелких продуктов метаболизма, которые клетка и вслед за ней организм способны вывести через природные системы выделения (почки и ЖКТ). Этот процесс идёт по одинаковым биохимическим механизмам и в нейтрофилах, и в макрофагах. Для этого у фагоцитов есть специальный «аппарат» литических ферментов (кислых протеаз и гидролаз), заключенных в особые органеллы — лизосомы; pH в лизосомах около 4. Мембрана фагосомы сливается с мембраной лизосомы, предоставляя лизосомным ферментам доступ к фагоцитированному веществу.

В гранулах нейтрофилов содержатся литические ферменты, которые активированный нейтрофил в очаге выбрасывает в межклеточное вещество. Это коллагеназа, катепсин G, желатиназа, эластаза, фосфолипаза A2.

Кроме этого, у фагоцитов есть специальные системы ферментов, генерирующие образование реакционно-способных свободных радикалов кислорода (супероксидного аниона О2, синглетного кислорода 1O2), а также пероксида водорода. Фермент NO–синтаза генерирует образование радикала оксида азота (NO+). Эти радикалы осуществляют деструктивные реакции применительно к фагоцитированному объекту. Но, кроме того, фагоцит секретирует их в окружающую межклеточную среду, где они оказывают травмирующее действие, в том числе и на собственные ткани (табл. 3.6).

Таблица 3.6. Бактерицидные биохимические механизмы фагоцитов и «встречные» биохимические механизмы «сопротивления» микроорганизмов, обеспечивающие выживание и даже размножение микробов внутри фагоцитов макроорганизма

Приспособительные пути метаболизма Кислородзависимые Смешанные (кислород/азот) Азотзависимые
В фагоцитах Исходный субстрат — кислород (О2)   Исходный субстрат — гуанидино-NL–аргинин (RNH2)
  ¯ НАДФ–оксидаза   ¯ NO–синтаза
  Супероксид (О2) ® OONO пероксинитрит анион Радикал оксида азота (NO+)
  ¯ Супероксид-дисмутаза   ¯
  ¯ Пероксид (Н2О2) радикалы гидроксила и феррила (ОН, FeO+)   Радикал двуокиси азота (NO2); S-нитрозотиолы; комплексы динитрозилжелеза
У микроорганизмов* Каталазы, супероксиддисмутазы, пероксиредоксины, пептидил-метионинсульфоксид редуктазы, ферменты метаболизма глутатиона, глутаредоксина, тиоредоксина, трипаредоксина, трипанотиона, микотиона. Антиоксиданты (аскорбат, пируват, токоферол)   Алкил-гидропероксидаз-редуктаза; флавогемоглобин; глюкозо–6–фосфат дегидрогеназа; низкомолекулярные тиолы (глутатион, гомоцистеин); антиоксиданты-регулоны; ферменты репарации ДНК (RecB, RecC)

* На примере бактерий Salmonella typhimurium (возбудитель брюшнотифозной лихорадки) и Mycobacterium tuberculosis (возбудитель туберкулёза). У S. typhimurium в ранние сроки имеет значение метаболическое противодействие бактерий кислородзависимым бактерицидным механизмам фагоцитов, в поздние — азотзависимым бактерицидным механизмам. У М. tuberculosis имеют значение оба метаболических механизма выживания внутри фагоцитов, но более существен механизм устойчивости к азотзависимой атаке фагоцитов.

Макрофаги и нейтрофилы, активированные микробными продуктами, начинают продуцировать цитокины и другие биологически активные медиаторы. Макрофаги продуцируют интерлейкины (ИЛ–1, ИЛ–6, ИЛ–8, ИЛ–12), фактор некроза опухоли a (TNF–a), а также простагландины, лейкотриен В4 (LTB4) активирующий тромбоциты фактор (ФАТ). Нейтрофилы продуцируют TNF–a и ИЛ–12, а также хемокин ИЛ–8. Кроме того, нейтрофилы вырабатывают LTB4 и ФАТ.

Названные медиаторы из фагоцитов создают в очаге внедрения внешних субстанций доиммунное воспаление в барьерной ткани, которое обеспечивает активацию кровеносных сосудов, дендритных клеток и лимфоцитов, «подготавливающую» возможность развития лимфоцитарного иммунного ответа.

Только в макрофагах (в нейтрофилах нет) происходят образование внутри клеток комплексов из продуктов расщепления фагоцитированного вещества с собственными молекулами MHC–II и экспрессия этого комплекса на поверхность клетки с «целью» представления Аг для распознавания T–лимфоцитами. Таким образом, макрофаги способны осуществлять функции АПК.

Без лимфоцитарного иммунитета, т.е. без лимфоцитов и их продуктов — цитокинов и АТ, защитные санирующие возможности фагоцитоза, однако, ограничены. Во-первых, доиммунное воспаление в ответ на распознавание и поглощение патогенного материала в целом количественно слабое, «холодное», не мощное. Микроорганизмы земной биосферы эволюционировали (и продолжают эволюционировать) таким образом, что многие из них «не боятся» фагоцитов, многие способны жить и размножаться именно в макрофагах: это микобактерии, сальмонеллы, лейшмании, листерии, трипаносомы, легионеллы, криптококки, гистоплазмы, иерсении, простейшие, риккетсии, вирусы, в том числе ВИЧ. Поэтому позвоночным для выживания «понадобилась» система защиты от инфекций более сильная, чем просто фагоцитоз. Во-вторых, фагоциты только расходуются в конкретной защитной реакции, они не пролиферируют и им не дано «запоминать» патоген, т.е. никакого усиленного «иммунитета» в отношении повторного проникновения того же патогена в организм на уровне фагоцитов не создаётся. Это уникальное свойство приобрели в эволюции только лимфоциты. И может быть, это — главный параметр позитивного естественного отбора, закрепившего лимфоцитарный иммунитет у многоклеточных, начиная с челюстных рыб.

Однако в ряде ситуаций нельзя недооценивать, например, патофизиологические последствия доиммунной активации нейтрофилов непосредственно микробными продуктами. Так, при инфекции Toxoplasma gondii летальный некроз печени в первые 24–48 ч обусловлен «цитокиновым взрывом» именно из нейтрофилов. На нейтрофилах, как и на макрофагах, экспрессирован Рц CD14, который связывает комплексы ЛПС с ЛПC–связывающим протеином сыворотки (LBP), а также комплексы ЛПС с другими микробными продуктами (например, с эндотоксинами).

Нейтрофилы — самые многочисленные из белых клеток в циркулирующей крови. Они первыми мигрируют из сосудов в очаг поражения в ткань [за счёт быстрой экспрессии нужных молекул адгезии — VCAM–1 (лиганд на эндотелии VLA–4) и CD11b/CD18 (лиганд на эндотелии ICAM–1)]. Например, всего за 1 ч после введения в перитонеальную полость мыши сублетальной дозы Toxoplasma gondii число нейтрофилов в перитонеальной полости возрастает с 2 до 25% от общего числа лейкоцитов. В очаге они быстро активируются и секретируют радикалы кислорода и литические ферменты. Связывание лиганда с Рц CD14 на нейтрофилах активирует довольно интенсивную выработку нейтрофилами TNF–a и ИЛ–12.

Моноклональные АТ RDC6.8C5 к молекуле Gr–1, экспрессированной на нейтрофилах и эозинофилах мыши, при введении in vivo обладают свойством эффективно элиминировать гранулоциты, что позволяет использовать их в модельных экспериментах. Например, введение мышам D–галактозамина индуцирует экспрессию на клетках печени Рц для TNF–a. Если таким образом предобработанным мышам затем ввести надлежащую дозу лизата Toxoplasma gondii, то через 24–48 ч произойдёт массивная гибель клеток печени по механизму TNF–a-индуцированного апоптоза и смерть животных. Если же мышам перед введением лизата Toxoplasma gondii ввести антинейтрофильные АТ, то печень останется цела и мыши будут живы. Это свидетельствует о том, что нейтрофилы являются источником «взрывного выброса» TNF–a в ответ на попадание в организм больших количеств Аг Toxoplasma gondii. Вообще же нейтрофилы прямо реагируют на продукты следующих возбудителей инфекционных заболеваний: Toxoplasma gondii, виды Plasmodium и Leishmania, Trypanosoma cruzi, Pneumocystis carinii, Cryptosporidium parvum, Mycobacterium tuberculosis, Listeria monocytogenes, Candida albicans.


Дата добавления: 2015-10-28; просмотров: 184 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Лимфоидная ткань слизистых оболочек и кожи| Интерфероны типа I

mybiblioteka.su - 2015-2025 год. (0.019 сек.)