Читайте также:
|
|
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.
Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. Е., иными словами, выравнивание температур.
Перенос энергии в форме теплоты подчиняется закону Фурье:
(48.1)
Где je — плотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, l — теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки je и – противоположны). Теплопроводность l численно равна плотности теплового потока при градиенте температуры, равном единице.
Можно показать, что
(48.2)
Где сv — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плотность газа, <v> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега.
48. Реальные газы. Понятие о явлениях переноса. Явление вязкого трения. Коэффициент вязкости.
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.
3. Внутреннее трение (вязкость). Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.
Согласно формуле (31.1), сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:
(48.5)
Где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S — площадь, на которую действует сила F.
Взаимодействие двух слоев согласно второму закону Ньютона можно рассматривать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно представить в виде
(48.6)
Где jp — плотность потока импульса — величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, — градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости (поэтому знаки jр и противоположны).
Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле
(48.7)
Электричество:
49. Электрический заряд и его свойства. Закон Кулона.
Опытным путем (1910—1914) американский физик Р. Милликен (1868—1953) показал, что электрический заряд дискретен, т. Е. Заряд любого тела составляет целое кратное от элементарного электрического заряда е (е=1,6×10–19 Кл). Электрон (me=9,11×10–31 кг) и протон (тp= 1,67×10–27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.
Все тела в природе способны электризоваться, т. Е. Приобретать электрический заряд. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.
Фундаментальный закон природы, экспериментально подтвержденный в 1843 г. Английским физиком М. Фарадеем (1791—1867), — закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.
Электрический заряд не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.
Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов. Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует.
Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:
Где k — коэффициент пропорциональности, зависящий от выбора системы единиц.
Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. Е. Является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой.
50. Напряженность электрического поля. Принцип суперпозиции.
Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:
(79.1)
Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда в вакууме
(79.2)
Направление вектора Е совпадает с направлением силы, действующей на положительный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положительного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду.
Результирующая сила F, действующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi:
(80.1)
Согласно (79.1), F = Q0E и Fi = Q0Еi, где Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя последние выражения в (80.1), получаем
(80.2)
Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.
Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.
Принцип суперпозиции применим для расчета электростатического поля электрического диполя.
51. Теорема Гаусса для вектора E в вакууме (в интегральной и дифференциальной форме).
Поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен
Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.
Если замкнутая поверхность произвольной формы охватывает заряд, то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее. Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e0, т. Е.
(81.1)
Знак потока совпадает со знаком заряда Q.
Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Ei полей, создаваемых каждым зарядом в отдельности: Поэтому
Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi /e0. Следовательно,
(81.2)
Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.
Дата добавления: 2015-10-02; просмотров: 70 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Круговой процесс (цикл). Тепловые двигатели и холодильные машины. КПД цикла. Цикл Карно и его КПД для идеального газа. Диаграмма. | | | Теорема о циркуляции вектора E в вакууме. |