Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Реальные газы. Понятие о явлениях переноса. Явление теплопроводности. Коэффициент теплопроводности.

Работа и законы сохранения. Связь потенциальной энергии и силы. Гравитационное поле. Напряженность и потенциал гравитационного поля. | Работа и законы сохранения. Законы сохранения. | Неинерциальные системы отсчета. Принцип преобразования скоростей Галилея. Механи-ческий принцип относительности Галилея. | ПОСТУЛАТЫ ЭЙНШТЕЙНА | СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ | Механические колебания. Понятие о колебательных процессах, свободные и вынужденные колебания. Гармонические колебания. | Механические колебания. Гармонический осциллятор. Пружинный, математический и физический маятник. | Механические колебания см. 22. | Механические колебания. Вынужденные колебания. Анализ вынужденных колебаний. Резонанс. | Механические волны. Распространение волн в упругой среде. Продольные и поперечные волны. |


Читайте также:
  1. I. Объявление темы и постановка целей урока
  2. I. ПОНЯТИЕ О КОЛЛЕКТИВЕ
  3. V. Понятие легитимного порядка
  4. V. Понятие рейха в международном праве
  5. VII. Понятие пространства в правовой науке
  6. XIII. Понятие воли
  7. Акт применения права: понятие, признаки, виды. Отличие акта применения права от нормативно-правового акта и акта толкования норм права.

В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса, в результате которых происходит пространствен­ный перенос энергии, массы, импульса. К явлениям переноса относятся теплопровод­ность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномер­ными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориен­тирована в направлении переноса.

Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных сто­лкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. Е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняется закону Фурье:

(48.1)

Где je — плотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, l — теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки je и – противоположны). Теплопроводность l численно равна плотности теплового потока при градиенте температуры, равном единице.

Можно показать, что

(48.2)

Где сv — удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плотность газа, <v> — средняя скорость теплового движения молекул, <l> — средняя длина сво­бодного пробега.


48. Реальные газы. Понятие о явлениях переноса. Явление вязкого трения. Коэффициент вязкости.

В термодинамически неравновесных системах возникают особые необратимые процес­сы, называемые явлениями переноса, в результате которых происходит пространствен­ный перенос энергии, массы, импульса. К явлениям переноса относятся теплопровод­ность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномер­ными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориен­тирована в направлении переноса.

3. Внутреннее трение (вязкость). Механизм возникновения внутреннего трения меж­ду параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Согласно формуле (31.1), сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

(48.5)

Где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению дви­жения слоев, S — площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматри­вать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно пред­ставить в виде

(48.6)

Где jp — плотность потока импульса — величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, — градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости (поэтому знаки jр и противоположны).

Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле

(48.7)

 

Электричество:
49. Электрический заряд и его свойства. Закон Кулона.

Опытным путем (1910—1914) американский физик Р. Милликен (1868—1953) пока­зал, что электрический заряд дискретен, т. Е. Заряд любого тела составляет целое кратное от элементарного электрического заряда е (е=1,6×10–19 Кл). Электрон (me=9,11×10–31 кг) и протон (тp= 1,67×10–27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.

Все тела в природе способны электризоваться, т. Е. Приобретать электрический заряд. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.

Фундаментальный закон природы, экспериментально подтвержденный в 1843 г. Английским физиком М. Фарадеем (1791—1867), — закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними тела­ми) остается неизменной, какие бы процессы ни происходили внутри этой системы.

Электрический заряд не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов. Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

Где k — коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. Е. Является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой.


50. Напряженность электрического поля. Принцип суперпозиции.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

(79.1)

Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда в вакууме

(79.2)

Направление вектора Е совпадает с направлением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду.

Результирующая сила F, дейст­вующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi:

(80.1)

Согласно (79.1), F = Q0E и Fi = Q0Еi, где Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя последние выраже­ния в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчитать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элект­рического диполя.

 


51. Теорема Гаусса для вектора E в вакууме (в интегральной и дифференциальной форме).

Поток вектора напряженности сквозь сферичес­кую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен

Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд, то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее. Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e0, т. Е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Ei полей, создаваемых каждым зарядом в отдельности: Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi /e0. Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

 


Дата добавления: 2015-10-02; просмотров: 70 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Круговой процесс (цикл). Тепловые двигатели и холодильные машины. КПД цикла. Цикл Карно и его КПД для идеального газа. Диаграмма.| Теорема о циркуляции вектора E в вакууме.

mybiblioteka.su - 2015-2024 год. (0.012 сек.)