Читайте также:
|
|
Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и в ней задана прямая линия.
Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.
Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y, которое обращается в тождество при подстановке в него координат любой точки этой прямой.
Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач испособом задания прямой линии на плоскости. Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.
Общее уравнение прямой.
Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.
Дата добавления: 2015-08-27; просмотров: 62 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Параметрические уравнения прямой в пространстве | | | Теорема. |