Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Определение.

Обратная матрица | II. Алгебраические дополнения | Сложение нескольких векторов - правило многоугольника. | Операция умножения вектора на число. | Свойства операций над векторами. | Параметрические уравнения прямой в пространстве | Уравнение прямой на плоскости - определение. | Теорема. | Посмотрите на чертеж. | Уравнение прямой в отрезках. |


Читайте также:
  1. Вера в предопределение.
  2. Уравнение прямой на плоскости - определение.

Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .

Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует).Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.

Заметим, что прямая, определяемая уравнением , проходит через точку на оси ординат.

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox. Ее угловой коэффициент равен .


Дата добавления: 2015-08-27; просмотров: 62 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Уравнение прямой с угловым коэффициентом.| Каноническое уравнение прямой на плоскости.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)