Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Пример 2.

Определение | Теорема | Определение | Следствия из первого замечательного предела | Непрерывность элементарных функций | Производная. Геометрический и механический смысл производной | Определение убывающей функции. | Точки экстремума, экстремумы функции. | Достаточные условия возрастания и убывания функции. | Первое достаточное условие экстремума. |


Читайте также:
  1. I) Эффективность военных преобразований 1860-1870-х годов на примере Русско-японской войны.
  2. I. Примерный перечень вопросов рубежного контроля.
  3. II. Примерный перечень вопросов к зачету (экзамену) по всему курсу.
  4. III. РАЗЛИЧНЫЕ СХЕМЫ УПРАВЛЕНИЯ ГОСУДАРСТВЕННОЙ СОБСТВЕННОСТЬЮ: ПРИМЕРЫ ИЗ ИСТОРИЧЕСКОГО ОПЫТА И ЗАРУБЕЖНОЙ ПРАКТИКИ
  5. Look at the family tree and complete the sentences as in the example (Посмотри на семейное древо и заполни пропуски как в примере).
  6. Lt;question>Выберите правильный пример аннотации.
  7. XVI. Переведите на калмыцкий язык, заменяя подчеркнутые слова предложенными примерами.

Найти общий член последовательности

Р е ш е н и е: не трудно видеть, что

,

, и т.д.

Следовательно:

Пример 3.

Доказать, что последовательность с общим членом имеет предел, равный нулю.

Р е ш е н и е: запишем ряд членов последовательности

и положим . Для всех членов данной последовательности, начиная с четвертого, выполняется равенство

Действительно

и т.д.

В данном случае N (см. определение предела последовательности) можно принять равным трем (или любому числу, больше трех), так как, если порядковый номер члена последовательности n больше трех, то выполняется неравенство

.

Положим теперь . Ясно, что для всех членов последовательности начиная с седьмого,

.

Теперь за N можно принять шесть (или любое число, большее шести). Если , то и т.д.

В данном случае можно найти общее выражение для числа N в зависимости от . Общий член данной последовательности . Задавшись произвольным положительным числом , мы должны в соответствии с определением предела, потребовать, чтобы при n > N выполнялось неравенство , если .

Решая неравенство относительно n, получаем . Итак, за N можно принять число (или любое большее число). Таким образом, мы показали, что для любого существует такое , чтопри , выполняется неравенство , а это и доказывает, что пределом последовательности является нуль.

Отметим, что в этой задаче члены последовательности приближались к своему пределу, оставаясь больше этого предела, как говорят, справа.

 


Дата добавления: 2015-08-20; просмотров: 52 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Числовая последовательности и ее предел.| Табличный способ

mybiblioteka.su - 2015-2024 год. (0.005 сек.)