Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Точки экстремума, экстремумы функции.

Числовая последовательности и ее предел. | Пример 2. | Табличный способ | Определение | Теорема | Определение | Следствия из первого замечательного предела | Непрерывность элементарных функций | Производная. Геометрический и механический смысл производной | Первое достаточное условие экстремума. |


Читайте также:
  1. III. С ТОЧКИ ЗРЕНИЯ ФЕРМЕРА
  2. А146. Предприятие с точки зрения гражданского права...
  3. Абсолютная скорость точки
  4. Абсолютное ускорение точки
  5. АК СДЕЛАТЬ ПОМПОНЫ И КИСТОЧКИ ИЗ ИСКУССТВЕННОГО МЕХА.
  6. Алгоритм нахождения точек экстремума по первому признаку экстремума функции.
  7. Анализ основных ГЧП-инструментов с точки зрения использования в них механизмов Внешэкономбанка

Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции.

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.

На первом рисунке наибольшее значение функции на отрезке [a;b] достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b, которая не является точкой максимума.


Дата добавления: 2015-08-20; просмотров: 85 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Определение убывающей функции.| Достаточные условия возрастания и убывания функции.

mybiblioteka.su - 2015-2024 год. (0.005 сек.)