Читайте также:
|
|
Совокупность всех последовательностей максимальной длины, формирование которых было рассмотрено в разделе 6.7.2, представляет собою циклический - код. Эти коды являются двойственными к циклическим кодам Хэмминга, так как для них проверочными многочленами служат неприводимые многочлена степени k, являющиеся сомножителями двучленов степени и не входящие в разложение никаких двучленов меньших степеней (см. раздел 6.3).
Рассмотрим некоторые свойства таких кодов.
Свойство 9.4. Все множество ненулевых кодовых комбинаций кода на основе последовательностей максимальной длины может быть получено путем циклического сдвига любой ненулевой кодовой комбинации.
Действительно, генератор последовательности максимальной длины генерирует непрерывно все решений рекуррентного соотношения, которые представляют собою циклические сдвиги последовательности максимальной длины, а так как число ненулевых решений равно , то все они и являются ненулевыми кодовыми комбинациями и нет никаких других ненулевых кодовых комбинаций.
Свойство 9.5. Кодовое расстояние в коде на основе последовательностей максимальной длины между любыми парами кодовых комбинаций постоянно и равно d =2 k-1 .
Равенство всех попарных кодовых расстояний является непосредственным следствием свойства 9.4, которое обусловило равенство весов всех ненулевых кодовых комбинаций. Найдем суммарный вес всех кодовых комбинаций. Для этого выделим подгруппу кодовых комбинаций, имеющих нуль на некотором фиксированном разряде. Разложим множество всех кодовых комбинаций по этой подгруппе. В качестве смежного класса выберем любую комбинацию, имеющую единицу в данном разряде. Смежный класс в таком разложении будет единственным. Допустим, что это не так и что возможен еще один смежный класс из кодовых комбинаций с единицей в фиксированном разряде. Тогда сумма любых комбинаций из разных смежных классов должна дать комбинацию, принадлежащую выделенной подгруппе. Это значит, что суммируемые комбинации должны принадлежать одному смежному классу.
Таким образом, равно половина всех кодовых комбинаций имеет единицу в некотором фиксированном разряде. Стало быть, суммарный вес всех кодовых комбинаций равен , а вес каждой ненулевой комбинации равен т.к.
Таким образом, циклические -коды, ненулевые кодовые комбинации которых представляют собою все возможные последовательности максимальной длины , имеют одинаковое кодовое расстояние между различными кодовыми комбинациями d =2 k-1 .
Коды, имеющие одинаковое кодовое расстояние между различными кодовыми комбинациями получили название эквидистантных.
Дата добавления: 2015-08-02; просмотров: 83 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Коды для исправления пачек ошибок | | | Коды с постоянным весом |