Читайте также: |
|
Сверхрешетки представляют собой искусственные материалы, полученные путем чередования двух или более слоев полупроводников, отличающихся физическими свойствами. При толщинах полупроводниковых слоев, соизмеримых с эффективной длиной волны носителей заряда, наблюдаются некоторые особенности поведения носителей, получившие название квантовых размерных эффектов. Эти эффекты вызваны в первую очередь дискретностью составляющих энергетического спектра электронов в слое в направлении ее толщины. Чередование таких тонких слоев с различными физическими свойствами создает в структуре сверхрешеточный потенциал, который видоизменяет зонную структуру основного материала. Поскольку период сверхрешетки превосходит постоянную кристаллической решетки материала зона Бриллюэна разбивается на ряд минизон, что создает в зоне проводимости и в валентной зоне исходного кристалла подзоны, разделенные запрещенными участками. Анализ показывает, что толщина слоев, при которой будут заметны квантовые эффекты
(4.37)
Ориентировочные оценки толщин слоя дают значение для металлов d=10-8см, для полупроводников d=10-5см.
Если длина свободного пробега электронов достаточно велика, то при наложении на этот новый, искусственный материал внешнего электрического поля F электроны, ускоряясь, будут двигаться по минизоне в q-пространстве и, не успев рассеятся, достигнет в зоне Бриллюэна точки, где эффективная масса станет отрицательной. При этом дрейфовая скорость будет падать с ростом F и возникнет отрицательное сопротивление. Кроме того, если достаточно велико время рассеяния, электроны будут проходить через всю минизону и, испытывая брегговское рассеяние на обоих границах, совершать периодическое движение с частотой, пропорциональной толщине периода сверхрешетки. Для умеренных полей (F=103В/см) и d=10нм имеем частоту колебания 250ГГц.
Исследуется в настоящее время два типа сверхрешеток:
- с переменным легированием;
- с переменным составом (гетеро-сверхрешетки);
- с переменным легированием и составом (модуляционно-легированные гетеро-сверхрешетки).
На рис. приведены три основных типа гетеро-сверхрешеток.
Теоретический анализ и экспериментальные результаты показывают, что в гетеро-сверхрешетках подвижность носителей заряда выше, чем в легированных сверхрешетках. Эту подвижность можно увеличить, используя модулированное легирование гетеро-сверхрешеток (легируются только барьеры). В этом случае электроны, созданные донорами, сваливаются из барьеров в квантовые ямы (области с меньшей шириной запрещенной зоны) и постоянно находятся там. Тем самым путем пространственного разделения электронов и породивших их доноров решается старая дилемма физики полупроводников – получение в материале высокой концентрации носителей заряда с высокой подвижностью (движение электронов в пло скости решетки). В гетеропереходах с квантовыми ямами была достигнута подвижность носителей заряда до 106см2/Вс при 77К
Рис. 4.7 Зонные диаграммы нелегированной (а), однородно-легированной (б) и модуляционно-легированной сверхрешетки с квантовой ямой.
.Вслед за открытием явления увеличения подвижности носителей заряда в сверхрешетках было обнаружено, что только одна граница раздела в гетеропереходе требуется для переноса заряда и что электрического поля, которое возникает из-за разделения заряда, вполне достаточно для сдерживания электронов на границе раздела со стороны узкозонного полупроводника. Образованный электронный слой имеет квазидвумерный характер и чаще фигурирует под названием двумерного электронного газа.
К 2000 году в мире эти новые идеи использованы при создании мощных полупроводниковых светодиодов, лазеров и быстродействующих малошумящих полевых транзисторов с двумерным электронным газом (ДЭГ).
Дата добавления: 2015-07-25; просмотров: 164 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Эффективность коллектора. | | | Структура металл-диэлектрик-полупроводник. |