Читайте также: |
|
Введение
При использовании метода наименьших квадратов для определения прогнозной тенденции (тренда) заранее предполагают, что все ретроспективные данные (наблюдения) обладают одинаковой информативностью. Очевидно, логичнее было бы учесть процесс дисконтирования исходной информации, то есть неравноценность этих данных для разработки прогноза. Это достигается в методе экспоненциального сглаживания путем придания последним наблюдения динамического ряда (то есть значениям, непосредственно предшествующим периоду упреждения прогноза) более значимых «весов» по сравнению с начальными наблюдениями. К достоинствам метода экспоненциального сглаживания следует также отнести простоту вычислительных операций и гибкость описания различных динамик процесса. Наибольшее применения метод нашел для реализации среднесрочных прогнозов [2].
После изучения данного раздела рекомендуется ответить на вопросы для самопроверки и на вопросы теста 5.
В случае если ответы на какие-либо вопросы вызовут затруднение или неуверенность, рекомендуется прочитать учебное пособие Голик, Е.С. Теория и методы статистического прогнозирования: учебное пособие /Е.С. Голик, О.В. Афанасьева. – СПб.: Изд-во СЗТУ, 2007. – 182 с., (с. 69 – 78).
Дата добавления: 2015-07-25; просмотров: 59 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Введение | | | Сущность метода экспоненциального сглаживания |