Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Порядок роста функции

Понять, что такое предел. 2. Научиться решать основные типы пределов. | Пределы с неопределенностью вида и метод их решения | Общее правило: если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители. | Что необходимо знать и уметь на данный момент? | Сравниваем старшие степени: , следовательно, числитель более высокого порядка роста, чем знаменатель, и сразу можно сказать, что предел будет равен бесконечности. | Метод замены переменной в пределе | Бесконечно малые функции. Сравнение бесконечно малых | Может ли функция быть бесконечно малой на бесконечности? | Сравнение бесконечно малых функций | Что принципиально важно во всех рассмотренных примерах? |


Читайте также:
  1. I. Перепишите следующие предложения и переведите их на русский язык, обращая внимание на функции инфинитива.
  2. I. Понятие об эмоциях, их структура и функции. Механизмы психологической защиты
  3. II. Подготовка и порядок ведения переговоров.
  4. II. Порядок действий по жалобам на решения мировых посредников
  5. II. ПОРЯДОК ЗАЧИСЛЕНИЯ В ВОЕННЫЙ ИНСТИТУТ
  6. II. Порядок проведения профилактических осмотров
  7. II. Условия и порядок проведения конкурса

В данном параграфе будут разобраны пределы с многочленами, многочленами под корнем, когда или . Материал вам уже частично знаком, и настала пора разобраться в нём как следует. Давайте научимся находить решение в считанные секунды!

Вычислим следующий предел:

На базовом уроке Пределы. Примеры решений я рекомендовал рассуждать не совсем корректным способом: сначала «икс» равно 10, потом, 100, затем 1000, миллион и т.д. до бесконечности. В чём изъян такого подхода? Построим данную последовательность:


Исходя из полученных результатов, складывается стойкое впечатление, что предел стремится к «минус бесконечности»:

Но на поверку впечатление кардинально ошибочно. В этой связи необходимо знать теорию матана, а именно, некоторые выкладки о порядке роста функции.

Применительно к нашему примеру можно сказать, что слагаемое обладает более высоким порядком роста, чем сумма . Иными словами, при достаточно больших значениях «икс» слагаемое «перетянет» на «плюс бесконечность» всё остальное:

При небольших значениях «икс» – да, сладкая парочка перетягивает канат в сторону «минус бесконечности», что и привело нас к неверному первоначальному выводу. Но уже при получается гигантское положительное число .

Если сильно уменьшить первое слагаемое, то от этого ничего не изменится: , будет лишь отсрочен тот момент, когда бравая дробь «вытянет» весь предел на «плюс бесконечность». Не поможет и «усиление противовеса»:
.
Нулей можете приписать, сколько хотите (без шуток). Удивительная наука математический анализ – способна низвести любого монстра до мелочи пузатой.

Таким образом, кубическая функция имеет более высокий порядок роста, чем:

– квадратичная функция;
– линейная функция;
– функция-константа;
– сумма квадратичной функции, линейной функции и константы (в любых комбинациях).

На простейшем примере поясню геометрический смысл вышесказанного. Представьте графики линейной , квадратичной и кубической функций (см. методичку Графики и свойства функций). Легко заметить, что при увеличении значений «икс», кубическая парабола взмывает вверх гораздо быстрее и круче, чем парабола и, тем более, прямая.

Аналогичное правило можно сформулировать для любой степени:

Степенная функция данной степени растёт быстрее, чем любая степенная функция более низкой степени. И быстрее, чем сумма любого количества степенных функций более низкой степени.

Найдём предел

Значение данного предела зависит только от слагаемого . Всё остальное МЫСЛЕННО отбрасываем: , и теперь ясно как день, что предел стремится к «минус бесконечности»:

То есть, слагаемое более высокого порядка роста, чем всё остальное.

У «хвоста» могут быть сколь угодно большие константы, другие знаки, но результат от этого НЕ ИЗМЕНИТСЯ.


Дата добавления: 2015-07-25; просмотров: 243 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Что в пределах функций ЯВЛЯЕТСЯ неопределённостью и НЕ ЯВЛЯЕТСЯ неопределённостью| Сравнение бесконечно больших функций

mybiblioteka.su - 2015-2024 год. (0.006 сек.)