Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Гипергеометрическое распределение

Доказательство теоремы 1. | Урны и шарики | Пространство элементарных исходов. Операции над событиями | Парадокс Бертрана | Раздел 3. Аксиоматика теории вероятностей | Условная вероятность | Независимость | Формула полной вероятности | Раздел 5. Схема Бернулли | Наиболее вероятное число успехов |


Читайте также:
  1. III. РАСПРЕДЕЛЕНИЕ УЧЕБНОГО ВРЕМЕНИ ПО СЕМЕСТРАМ, РАЗДЕЛАМ, ТЕМАМ И ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ
  2. SW 3. РАСПРЕДЕЛЕНИЕУЧАСТНИКОВ ПО ПРЕДВАРИТЕЛЬНЫМ, ПОЛУФИНАЛЬНЫМ И ФИНАЛЬНЫМ ЗАПЛЫВАМ
  3. Абсолютно непрерывное совместное распределение
  4. Биномиальное распределение. Неравенство Бернулли.
  5. В 5. Распределение накладных расходов
  6. Влияние скандинавского завоевания на развитие АЯ. Скандинавские заимствования, их специфические черты и распределение по диалектам.

Пример 7.

Из урны, в которой n1 белых и n -n1 чёрных шаров, наудачу, без возвращения вынимают k шаров, k<n. Термин «наудачу» означает, что появление любого набора из k шаров равно возможно. Найти вероятность того, что будет выбрано ровно k1 белых и k - k1 чёрных шаров.

Заметим, что при k1 > n1 или k - k1 > n - n1 искомая вероятность равна 0, так как соответствующее событие невозможно. Пусть k1 < n1 и k - k1 < n - n1. Результатом эксперимента является набор из k шаров. При этом можно не учитывать или учитывать порядок следования шаров.

1. Выбор без учета порядка. Общее число элементарных исходов есть число k –элементных подмножеств множества, состоящего из n элементов, то есть (по теореме 3).

Обозначим через A событие, вероятность которого требуется найти. Событию A благоприятствует появление любого набора, содержащего k1 белых шаров и k - k1 черных.

Число благоприятных исходов равно произведению (по теореме 1) числа способов выбрать k1 белых шаров из n1 и числа способов выбрать k - k1 черных шаров из n - n1:

 
 

Вероятность события A равна:

2. Выбор с учетом порядка. Общее число элементарных исходов есть число способов разместить n элементов на k местах (по теореме 2).

 
 

При подсчете числа благоприятных исходов нужно учесть, как число способов выбрать нужное число шаров, так и число способов расположить эти шары среди k. Можно, скажем, посчитать число способов выбрать k1 мест среди k (равное ), затем число способов разместить на этих k1 местах n1 белых шаров (равное — не забывайте про учет порядка!), и затем число способов разместить на оставшихся k - k1 местах n - n1 черных шаров (равное ). Перемножив эти числа, получим:

 
 

В рассмотренной задаче мы сопоставили каждому набору из k1 белых и k-k1 черных шаров вероятность получить этот набор при выборе k шаров из урны, содержащей n1 белых и n-n1 черных шаров:

 
 

Определение 8. Соответствие или следующий набор вероятностей

Называется гипергеометрическим распределением.


Дата добавления: 2015-11-16; просмотров: 63 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Классическое определение вероятности| Задача Бюффона

mybiblioteka.su - 2015-2025 год. (0.005 сек.)