Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Средние величины. Средняя величина является одной из важнейших обобщающих характеристик статистики



Читайте также:
  1. Абсолютные и относительные величины.
  2. б) соли кислородсодержащих кислот (средние)
  3. Биохимические изменения в организме при беге на средние дистанции
  4. Восстановление и стимуляция работоспособности юного бегуна на средние дистанции
  5. Зарождение и развитие идей сравнительного правоведения в древнем мире и в средние века
  6. Измеренные величины.
  7. Китайский исторический цикл в Средние века

Средняя величина является одной из важнейших обобщающих характеристик статистики. В средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами, и находят выражение общие и закономерные черты, свойственные всей совокупности в целом. Индивидуальные значения признака (варианты), из которых вычисляется средняя величина, должны быть одного и того же вида, т. е. должны характеризовать однородные явления и иметь одинаковые единицы измерения.

В каждом конкретном случае средняя величина имеет определенное, социально-экономическое содержание, обусловленное природой изучаемого объекта. Например: Средняя зарплата первого сотрудника определяется путем деления фонда оплаты труда на численность сотрудников. Средний размер вклада в банке определяется путем деления суммы все вкладов.

В статистике вычисляют степенные и структурные средние величины. Общая формула степенных средних величин имеет следующий вид: . В этой формуле Xi – индивидуальное значение признаков (варианты); ƒi – соответствующие частоты (частости); m – показатель степени. Различают следующие виды степенных средних величин: 1) При m = 1 → средняя арифметическая величина. 2) При m = -1 → средняя гармоническая величина. 3) При m = 0 → средняя геометрическая величина. 4) При m = 2 → средняя квадратичная величина. 5) При m = 3 → средняя кубическая величина.

Выбор формулы для расчета средней величины зависит от имеющейся исходной информации.

Средняя арифметическая величина.

Вычисляют простую и взвешенную среднюю арифметическую величину. Формула простой имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные не сгруппированы (не образованы в группы пол какому-то признаку) и каждой единице совокупности соответствует определенное значение признака, либо, когда все частоты (частости) равны между собой. Формула средней арифметической взвешенной величины имеет следующий вид: . Эта формула применяется в тех случаях, когда исходные данные сгруппированы, и каждой группе единиц совокупности соответствует определенное значение признака (вариант). Пример: Приводится группировка депутатов фракции «Единство» Государственной Думы по возрасту на 16 января 2002 года:

Возраст депутата (полных лет) (X) Численность депутатов (кол-во человек) (ƒ) Середины интервалов (X) X* ƒ
20-29   24,5 24,5
30-39   34,5  
40-49   44,5  
50-59   54,5  
60-69   64,5 451,5
Итог:      

 

Для расчета средней арифметической величины в интервальном вариационном ряду необходимо: 1) Закрыть имеющиеся открытые интервалы группировки. 2) Найти середины каждого интервала, т. е. привести интервальный ряд к дискретному виду. 3) Найти произведение середин интервалов на соответствующие частоты (частости).

- Средний возраст депутатов данной фракции.

 


Дата добавления: 2015-07-11; просмотров: 68 | Нарушение авторских прав






mybiblioteka.su - 2015-2024 год. (0.007 сек.)