Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Section 4.2.5

Читайте также:
  1. Are the Section Headings Appropriate?
  2. Residual Lignin Structure (see Section 4.2.5)
  3. Section 278b - Terrorist association
  4. Section 4.2.3
  5. Section 4.2.4
  6. Section 4.2.6

1 Masura, V., Alkaline degradation of

spruce and beech wood. Wood Sci. Technol.,

1982; 16: 155–164.

2 Aurell, R., N. Hartler, Kraft pulping of

pine. Part 1. Changes in the composition

of the wood residue during the

cooking process. Svensk. Papperstid.,

1965; 68(3): 59–68.

3 Whistler, R.L., J.N. BeMiller, Alkaline

degradation of polysaccharides. Adv.

Carbohydrate Chem., 1958; 13: 289–329.

4 Buchert, J., et al., Effect of cooking and

bleaching on the structure of xylan in

conventional pine kraft pulp. Tappi J.,

1995; 78(11): 125–130.

5 Teleman, A., V. Harjunpaa,

M. Tenkanen, J. Buchert, T. Drakenberg,

T. Vuorinen, Characterisation of

4-deoxy-beta-L-threo-hex-4-enopyranosyluronic

acid attached to xylan in pine

kraft pulp and pulping liquor by 1H and

13C NMR spectroscopy. Carbohydrate

Res., 1995; 272(1): 55–71.

6 Yllner, S., B. Enstrom, Adsorption of

xylan on cellulose fibers during the sulfate

cook. Part I. 1956; 59: 229–232.

7 Andersson, N., D.I. Wilson,

U. Germgard, An improved kinetic

model structure for softwood kraft cooking.

Nordic Pulp Paper Res. J., 2003;

18(2): 200–209.

8 Kubes, G.J., et al., Viscosities of

unbleached alkaline pulps. II. The Gfactor.

J. Wood Chemistry Technol., 1983;

3(3): 313–333.

9 Arrhenius, S., N. Schmidt, Svensk. Papperstid.,

1924 (5).

10 Yan, F.J., D.C. Johnson, J. Appl. Polymer

Sci., 1981; 26: 1623.

11 Butt, J.B., Reaction kinetics and reactor

design. Prentice-Hall Inc.: New Jersey,

USA, 1980.

12 Michelsen, F.A., A dynamic mechanistic

model and model-based analysis of a

continuous Kamyr digester, in Department

of Engineering Cybernetics. The

Norwegian Institute of Technology, University

of Trondheim, Trondheim, 1995:

253.

13 Vroom, K.E., The ‘H’ Factor: A means of

expressing cooking times and temperatures

as a single variable. Pulp Paper

Mag. Can., 1957; 58C: 228–231.

14 Lindgren, C.T., M.E. Lindstrom,

Kinetics of the bulk and residual

delignification in kraft pulping of birch

and factors affecting the amount of residual

phase lignin. Nordic Pulp Paper

Res. J., 1997; 12(2): 124–134.

15 Axegaard, P., J.E. Wiken, Delignifikation

studies – factors affecting the

amount of “residual lignin”. Svensk. Papperstidn.,

1983; 86(15): R178–R184.

16 Sixta, H., Conventional Kraft cooking of

a mixture of 50% spruce and 50% pine.

R&D Department of Lenzing AG:

Lenzing, Austria, 2003.

17 Rydholm, S., Pulping Processes. Malabar,

Florida: Robert E. Krieger Publishing

Company, 1965: 616.

18 Hatton, J.V., Development of yield prediction

equations in kraft pulping.

Tappi, 1973; 56(7): 97–100.

19 Bailey, R.N., P. Maldonado, S.W. McKibbins,

M.G. Tarver, Statistical analysis

and optimization procedure for the

490 4 Chemical Pulping Processes

kraft pulping process. Tappi, 1969;

52(7): 1272–1275.

20 Alen, R., K. Niemela, E. Sjostrom, Gasliquid

chromatographic separation of

hydroxy monocarboxylic acids and dicarboxylic

acids on a fused-silica capillary

column. J. Chromatogr., 1984; 301(1):

273–276.

21 Alen, R., et al., A new approach for process

control of kraft pulping. J. Pulp

Paper Sci., 1991; 17(1): 6–9.

22 Emsley, A.M., G.C. Stevens, Kinetics

and mechanisms of the low-temperature

degradation of cellulose. Cellulose,

1994; 1: 26–56.

23 Kubes, G.J., et al., Viscosities of

unbleached alkaline pulps. II. The GFactor.

J. Wood Chemistry Technol., 1983;

3(3): 313–333.

24 Hakansdotter, L., L. Olm, The influence

of temperature on delignification and

carbohydrate degradation in soda-AQ

pulping of softwood. Nordic Pulp Paper

Res. J., 2001; 16: 183–187.

25 Li, Z., J. Li, G.J. Kubes, Kinetics of

delignification and cellulose degradation

during kraft pulping with polysulphide

and anthraquinone. J. Pulp Paper

Sci., 2002; 28(7): 234–239.

26 Fleming, B.I., G.J. Kubes, The viscosities

of unbleached alkaline pulps. IV.

The effect of alkali. J. Wood Chemistry

Technol., 1985; 5(2): 217–227.

27 LeMon, S., A. Teder, Kinetics of the

delignification in kraft pulping I. Bulk

delignification of pine. Svensk. Papperstid.,

1973; 11: 407–414.

28 Gustafson, R.R., et al., Theoretical

model of the kraft pulping process. Ind.

Eng. Chem. Process Des. Dev., 1983; 22:

87–96.

29 Kubo, M., et al. A kinetic model of

delignification in kraft pulps. In: Second

International Symposium on Wood

and Pulping Chemistry, Japan, 1983.

30 Chiang, V.L., J. Yu, R.C. Eckert, Isothermal

reaction kinetics of kraft delignification

of douglas-fir. J. Wood Chemistry

Technol., 1990; 10(3): 293–310.

31 Labidi, A., F. Pla, Delignification en

milieu alcalin de bois feuillus a l’aide

d’un reacteur a lit fixe et a faible temps

de passage. Holzforschung, 1992; 46(2):

155–161.

32 Vanchinathan, S., G.A. Krishnagopalan,

Kraft delignification kinetics based on

liquor analysis. Tappi, 1995; 78(3):

127–132.

33 Lindgren, C.T., M.E. Lindstrom, The

kinetics of residual delignification and

factors affecting the amount of residual

lignin during kraft pulping. J. Pulp

Paper Sci., 1996; 22(8): J290–J295.

34 Blixt, J., C.A.-S. Gustavsson, Temperature

dependence of residual phase

delignification during kraft pulping of

softwood. Nordic Pulp Paper Res. J.,

2000; 15(1): 12–17.

35 Olm, L., G. Tistad, Kinetics of the initial

stage of kraft pulping. Svensk. Papperstidn.,

1979; 15: 458–464.

36 Wilder, H.D., E.J. Daleski, Delignification

rate studies. Part II of a series on

kraft pulping kinetics. Tappi, 1965;

48(5): 293–297.

37 Kojima, M., et al. Reaction kinetics in

kraft pulping: Effect of chip thickness.

In: Second International Symposium

on Wood and Pulping Chemistry, Japan,

1983.

38 Lindstrom, M.E., Some factors affecting

the amount of residual phase lignin during

kraft pulping. In: Royal Institute of

Technology, Pulp and Paper Chemistry and

Technology, KTH: Stockholm, 1997.

39 Vitta, S.B., Delignification kinetics and

pulping characteristics of Soda-AQ and

Soda-THAQ pulping of sweetgum

(Liquidambar styracifula L.). 1979.

40 Smith, C., Studies of the mathematical

modelling, simulation, and control of the

operation of a Kamyr continuous digester

for the kraft process. Purdue University:

West Lafayette, Indiana, USA, 1974.

41 Kleinert, T.N., Mechanisms of alkaline

delignification. I. The overall reaction

pattern. Tappi, 1966; 49(2): 53–57.

42 McKibbins, S.W., Application of diffusion

theory to the washing of kraft

cooked wood chips. Tappi, 1960; 43(10):

801–805.

43 Christensen, T., C.C. Smith, L.F.

Abright, T.J. Williams, Modeling of

batch kraft pulping and of Kamyr digesters.

Pulp and Paper Canada, 1984;

85(8): 55–58, 60.

44 Andersson, N., D.I. Wilson,

U. Germgard. Validating continuous

References 491

kraft digester kinetic models with

online NIR measurements. In: American

Control Conference, Alaska, USA,

2002.

45 Pu, Q., W. McKean, R. Gustafson,

Kinetic model of softwood kraft pulping

and simulation of RDH process. Appita,

1991; 44(6): 399–404.

46 Norden, S., A. Teder, Modified kraft processes

for softwood bleached-grade

pulps. Tappi, 1979; 62(7): 49–51.

47 Lindgren, C.T., Kraft pulping kinetics

and modelling, the influence of HS-,

OH- and ionic strength. Royal Institute

of Technology: Stockholm, Sweden,

1997.

48 Gierer, J., I. Noren, On the course of

delignification during kraft pulping.

Holzforschung, 1980; 34: 197–200.

49 Gierer, J., The reactions of lignin during

pulping. A description and comparison

of conventional pulping processes.

Svensk. Papperstidn., 1970; 18: 571–596.

50 Ljunggren, S., The significance of aryl

ether cleavage in kraft delignification of

softwood. Svensk. Paperstidn., 1980;

83(13): 363–369.

51 Miksche, G., Uber das Verhalten des

Lignins bei der Alkalikochung. VI. Zum

Abbau von p-Hydroxy-phenylcumaranstrukturen

durch Alkali. Acta Chim.

Scand., 1972; 26(8): 3269–3274.

52 Miksche, G.E., Zum alkalischen Abbau

der p-Alkoxy-arylglycerin-b-aryletherstrukturen

des Lignins. Versuche mit

erythro-Veratrylglycerin-b-guajacylether.

Acta Chim. Scand., 1972; 26(8):

3275–3281.

53 Teder, A., L. Olm, Extended delignification

by combination of modified kraft

pulping and oxygen delignification.

Pap. Puu, 1981; 63(4a): 315–326.

54 Gierer, J., Chemical aspects of kraft

pulping. Wood Sci. Technol., 1980; 14:

241–266.

55 Chiang, V.L., M. Funaoka, Holzforschung,

1988; 42(6): 385.

56 Gustavsson, C.A.-S., C.T. Lindgren,

M.E. Lindstrom, Residual phase lignin

in kraft cooking related to the conditions

in the cook. Nordic Pulp Paper Res.

J., 1997; 12(4): 225–229.

57 Pekkala, O., Some features of residual

delignification during kraft pulping of

Sots Pine. Pap. Puu, 1983; 65(4): 251.

58 Gierer, J., F. Imsgard, I. Pettersson, Possible

condensation and polymerization

reactions of lignin fragments during

alkaline pulping processes. Appl. Polym.

Symp., 1976; 28: 1195.

59 Sjoblom, K., Extended delignification in

kraft cooking through improved selectivity.

Part 5. Influence of dissolved lignin

on the rate of delignification. Nordic

Pulp Paper Res. J., 1996; 3: 177–185.

60 Brunow, G., G.E. Miksche, Some reactions

of lignin in kraft and polysulfide

pulping. Appl. Polym. Symp., 1976; 28:

1155–1168.

61 Farkas, J., The dimensions of chip in

kraft pulping. Papir Celulosa, 1965;

20(1): 11–14.

62 Hatton, J.V., Quantitative evaluation of

pulpwood chip quality. Tappi, 1977;

60(4): 97–100.

63 Hatton, J.V., Screening mill chips for

sizeable savings. Pulp Paper Canada,

1977; 78(3): T57–T60.

64 Backmann, A., Flistjocklekens inverkan

pa cellulosautbyte och massakvallitet vid

kok av parallellipipedisk flis. Pap. Puu,

1946; 28(13): 200–208.

65 Backman, A., J. Finnish Paper Timber,

1946; 28(13): 200.

66 Hartler, N., K. Ostberg, Impregneringen

vid sulfatkoket. Svensk. Papperstidn.,

1959; 62(15): 524–533.

67 Stone, J.E., The penetrability of wood.

Pulp Paper Mag. Can., 1956; 57(7):

139–145.

68 Akhtaruzzamann, A.F.M., N.-E. Virkola,

Influence of chip dimensions in kraft

pulping. Part III. Effect on delignification

and a mathematical model for predicting

the pulping parameters. Pap.

Puu, 1979; 61(11): 737–758.

69 Akhtaruzzamann, A.F.M., N.-E. Virkola,

Influence of chip dimensions in kraft

pulping. Part IV. Effect on screened

pulp yield and effective alkali consumption;

predictive mathematical models.

Pap. Puu, 1979; 61(12): 805–814.

70 Chang, H.-M., K.V. Sarkanen, Species

variation in lignin. Effect of species on

the rate of Kraft delignification. Tappi,

1973; 56(3): 132–134.

492 4 Chemical Pulping Processes

71 Lee, Z.-Z., X.Q. Pau, International Symposium

on Wood Pulping Chemistry,

Vancouver, BC, 1985.

72 Epelde, I.G., C.T. Lindgren,

M.E. Lindstrom, Kinetics of wheat straw

delignification in soda and kraft pulping.

J. Wood Chem. Technol., 1998, 18(1):

69–82.

73 Cho, H.J., K.V. Sarkanen, Alternatives

to H-factor measurement in the kraft

process. Pap. Puu, 1985; 3: 121–124.

74 Christensen, T., et al., Dynamic modelling

of the Kamyr digester: normal

operation including hardwood-softwood

swings. Tappi, 1983; 66(11): 65–68.

75 Olm, L., P.J. Nelson, S.-E. Campbell,

The rate of delignification of Eucalyptus

disversicolor, E. regnans, E. marginata and

E. tetradonta woods during kraft pulping.

Appita, 1984; 37(4): 314–318.

76 Wilson, G., A.R. Procter, Reactions of

wood components with hydrogen sulphide:

Part V. The kinetics of kraft and

soda delignification of western hemlock.

Pulp Paper Mag. Can., 1970; 71(22):

67–71.

77 Farrington, A., P.F. Nelson, N. Vanderhoek,

A new alkaline pulping process.

Appita, 1977; 31(2): 119–120.

78 Timmel, T., Advances in Carbohydrate

Chemistry, ed. M.L. Wolfrom. Vol. 19.

New York: Academic Press, 1964.

79 Christensen, T., L.F. Albright,

T.J. Williams. A kinetic mathematical

model for the kraft pulping of wood. In:

TAPPI Annual Meeting, Atlanta, Georgia,

USA, 1983.

80 Kondo, R., K.V. Sarkanen, Kinetics of

lignin and hemicellulose dissolution

during the initial stage of alkaline pulping.

Holzforschung, 1984; 38(1): 31–36.

81 Schild, G., W. Muller, H. Sixta, Prehydrolysis

kraft and ASAM paper grade

pulping of eucalypt Wood. A kinetic

study. Das Papier, 1996; 50(1): 10–22.

82 Mortha, G., K. Sarkanen, R. Gustafson,

Alkaline pulping kinetics of short-rotation,

intensively cultured hybrid poplar.

Tappi J., 1992;00: 99–104.

83 Matthews, C.H., Carbohydrate losses at

high temperature in kraft pulping.

Svensk. Papperstidn., 1974; 77(17):

629–635.

84 Hartler, N., Penetrierung und Diffusionsverhalten

bei Sulfatkochung. Pap.

Puu, 1962; 7: 365–374.

85 Hagglund, O., Examensarbete. Royal

Institute of Technology: Stockholm,

1959.

86 Backstrom, C., Examensarbete. Royal

Institute of Technology: Stockholm,

1960.

87 Benko, J., The measurement of molecular

weight of lignosulfonic acids and

related material by diffusion. Tappi,

1964; 47(8): 508–514.

88 Rydholm, S., Pulping Processes. Malabar,

Florida: Robert E. Krieger Publishing

Company, 1965 p. 603.

89 Corbett,W.M., G.N. Richards, Svensk.

Papperstidn., 1957; 60: 791.

90 Giudici, R., S.W. Park, Kinetic model for

kraft pulping of hardwood. Ind. Eng.

Chem. Res., 1996; 35(3): 856–863.

91 Rydholm, S., Pulping Processes. Malabar,

Florida: Robert E. Krieger Publishing

Company, 1965, p. 586.

92 Nelson, P.J., G.M. Gniel, Delignification

of Eucalyptus regnans wood during

soda pulping. Appita, 1986; 39(2):

110–114.

93 Dolk, M., J.F. Yan, J.L. McCarthy, Lignin

25. Kinetics of delignification of Western

Helmlock in flow-through reactors

und alkaline conditions. Holzforschung,

1989; 43(2): 91–98.

94 Saucedo, V.M., G.A. Krishnagopalan,

Kinetics of conventional and alkali profiled

hardwood cooks using on-line

liquor analysis. Appita, 2002; 55(3): 202–

207, 223.

95 Larocque, G.L., O. Maass, The mechanism

of the alkaline delignification of

wood. Can. J. Res., 1941; 19(1): 1–16.

96 Waller, M.H., Y.N. Eyike, Soda anthraquinone

pulping of loblolly pine. A

kinetic study. J. Pulp Paper Sci., 1983;

9(3): 83–85.

97 Hakansdotter, L., L. Olm, The influence

of temperature on delignification and

carbohydrate degradation in soda-AQ

pulping of softwood. Nordic pulp Paper

Res. J., 2001; 16(3): 183–187.

98 Edwards, L., S.-E. Norberg, A. Teder,

Kinetics of the delignification in kraft

pulping. II. Bulk delignification of

References 493

birch. Svensk Papperstid., 1974; 77(3):

95–98.


Дата добавления: 2015-10-21; просмотров: 100 | Нарушение авторских прав


Читайте в этой же книге: Temperature | Cooking Conditions | Alternative Sulfite Pulping Concepts | Magnefite Process | Two-Stage Neutral Magnefite (Bisulfite-MgO) | Sivola Processes | Stora Processes (Hydrogen Sulfite or Monosulfite-Acid Sulfite) | Alkaline Sulfite Pulping | Na2SO3 Na2CO3 NaOH | Section 4.2.3 |
<== предыдущая страница | следующая страница ==>
Section 4.2.4| Section 4.2.6

mybiblioteka.su - 2015-2024 год. (0.048 сек.)