Читайте также: |
|
1 Masura, V., Alkaline degradation of
spruce and beech wood. Wood Sci. Technol.,
1982; 16: 155–164.
2 Aurell, R., N. Hartler, Kraft pulping of
pine. Part 1. Changes in the composition
of the wood residue during the
cooking process. Svensk. Papperstid.,
1965; 68(3): 59–68.
3 Whistler, R.L., J.N. BeMiller, Alkaline
degradation of polysaccharides. Adv.
Carbohydrate Chem., 1958; 13: 289–329.
4 Buchert, J., et al., Effect of cooking and
bleaching on the structure of xylan in
conventional pine kraft pulp. Tappi J.,
1995; 78(11): 125–130.
5 Teleman, A., V. Harjunpaa,
M. Tenkanen, J. Buchert, T. Drakenberg,
T. Vuorinen, Characterisation of
4-deoxy-beta-L-threo-hex-4-enopyranosyluronic
acid attached to xylan in pine
kraft pulp and pulping liquor by 1H and
13C NMR spectroscopy. Carbohydrate
Res., 1995; 272(1): 55–71.
6 Yllner, S., B. Enstrom, Adsorption of
xylan on cellulose fibers during the sulfate
cook. Part I. 1956; 59: 229–232.
7 Andersson, N., D.I. Wilson,
U. Germgard, An improved kinetic
model structure for softwood kraft cooking.
Nordic Pulp Paper Res. J., 2003;
18(2): 200–209.
8 Kubes, G.J., et al., Viscosities of
unbleached alkaline pulps. II. The Gfactor.
J. Wood Chemistry Technol., 1983;
3(3): 313–333.
9 Arrhenius, S., N. Schmidt, Svensk. Papperstid.,
1924 (5).
10 Yan, F.J., D.C. Johnson, J. Appl. Polymer
Sci., 1981; 26: 1623.
11 Butt, J.B., Reaction kinetics and reactor
design. Prentice-Hall Inc.: New Jersey,
USA, 1980.
12 Michelsen, F.A., A dynamic mechanistic
model and model-based analysis of a
continuous Kamyr digester, in Department
of Engineering Cybernetics. The
Norwegian Institute of Technology, University
of Trondheim, Trondheim, 1995:
253.
13 Vroom, K.E., The ‘H’ Factor: A means of
expressing cooking times and temperatures
as a single variable. Pulp Paper
Mag. Can., 1957; 58C: 228–231.
14 Lindgren, C.T., M.E. Lindstrom,
Kinetics of the bulk and residual
delignification in kraft pulping of birch
and factors affecting the amount of residual
phase lignin. Nordic Pulp Paper
Res. J., 1997; 12(2): 124–134.
15 Axegaard, P., J.E. Wiken, Delignifikation
studies – factors affecting the
amount of “residual lignin”. Svensk. Papperstidn.,
1983; 86(15): R178–R184.
16 Sixta, H., Conventional Kraft cooking of
a mixture of 50% spruce and 50% pine.
R&D Department of Lenzing AG:
Lenzing, Austria, 2003.
17 Rydholm, S., Pulping Processes. Malabar,
Florida: Robert E. Krieger Publishing
Company, 1965: 616.
18 Hatton, J.V., Development of yield prediction
equations in kraft pulping.
Tappi, 1973; 56(7): 97–100.
19 Bailey, R.N., P. Maldonado, S.W. McKibbins,
M.G. Tarver, Statistical analysis
and optimization procedure for the
490 4 Chemical Pulping Processes
kraft pulping process. Tappi, 1969;
52(7): 1272–1275.
20 Alen, R., K. Niemela, E. Sjostrom, Gasliquid
chromatographic separation of
hydroxy monocarboxylic acids and dicarboxylic
acids on a fused-silica capillary
column. J. Chromatogr., 1984; 301(1):
273–276.
21 Alen, R., et al., A new approach for process
control of kraft pulping. J. Pulp
Paper Sci., 1991; 17(1): 6–9.
22 Emsley, A.M., G.C. Stevens, Kinetics
and mechanisms of the low-temperature
degradation of cellulose. Cellulose,
1994; 1: 26–56.
23 Kubes, G.J., et al., Viscosities of
unbleached alkaline pulps. II. The GFactor.
J. Wood Chemistry Technol., 1983;
3(3): 313–333.
24 Hakansdotter, L., L. Olm, The influence
of temperature on delignification and
carbohydrate degradation in soda-AQ
pulping of softwood. Nordic Pulp Paper
Res. J., 2001; 16: 183–187.
25 Li, Z., J. Li, G.J. Kubes, Kinetics of
delignification and cellulose degradation
during kraft pulping with polysulphide
and anthraquinone. J. Pulp Paper
Sci., 2002; 28(7): 234–239.
26 Fleming, B.I., G.J. Kubes, The viscosities
of unbleached alkaline pulps. IV.
The effect of alkali. J. Wood Chemistry
Technol., 1985; 5(2): 217–227.
27 LeMon, S., A. Teder, Kinetics of the
delignification in kraft pulping I. Bulk
delignification of pine. Svensk. Papperstid.,
1973; 11: 407–414.
28 Gustafson, R.R., et al., Theoretical
model of the kraft pulping process. Ind.
Eng. Chem. Process Des. Dev., 1983; 22:
87–96.
29 Kubo, M., et al. A kinetic model of
delignification in kraft pulps. In: Second
International Symposium on Wood
and Pulping Chemistry, Japan, 1983.
30 Chiang, V.L., J. Yu, R.C. Eckert, Isothermal
reaction kinetics of kraft delignification
of douglas-fir. J. Wood Chemistry
Technol., 1990; 10(3): 293–310.
31 Labidi, A., F. Pla, Delignification en
milieu alcalin de bois feuillus a l’aide
d’un reacteur a lit fixe et a faible temps
de passage. Holzforschung, 1992; 46(2):
155–161.
32 Vanchinathan, S., G.A. Krishnagopalan,
Kraft delignification kinetics based on
liquor analysis. Tappi, 1995; 78(3):
127–132.
33 Lindgren, C.T., M.E. Lindstrom, The
kinetics of residual delignification and
factors affecting the amount of residual
lignin during kraft pulping. J. Pulp
Paper Sci., 1996; 22(8): J290–J295.
34 Blixt, J., C.A.-S. Gustavsson, Temperature
dependence of residual phase
delignification during kraft pulping of
softwood. Nordic Pulp Paper Res. J.,
2000; 15(1): 12–17.
35 Olm, L., G. Tistad, Kinetics of the initial
stage of kraft pulping. Svensk. Papperstidn.,
1979; 15: 458–464.
36 Wilder, H.D., E.J. Daleski, Delignification
rate studies. Part II of a series on
kraft pulping kinetics. Tappi, 1965;
48(5): 293–297.
37 Kojima, M., et al. Reaction kinetics in
kraft pulping: Effect of chip thickness.
In: Second International Symposium
on Wood and Pulping Chemistry, Japan,
1983.
38 Lindstrom, M.E., Some factors affecting
the amount of residual phase lignin during
kraft pulping. In: Royal Institute of
Technology, Pulp and Paper Chemistry and
Technology, KTH: Stockholm, 1997.
39 Vitta, S.B., Delignification kinetics and
pulping characteristics of Soda-AQ and
Soda-THAQ pulping of sweetgum
(Liquidambar styracifula L.). 1979.
40 Smith, C., Studies of the mathematical
modelling, simulation, and control of the
operation of a Kamyr continuous digester
for the kraft process. Purdue University:
West Lafayette, Indiana, USA, 1974.
41 Kleinert, T.N., Mechanisms of alkaline
delignification. I. The overall reaction
pattern. Tappi, 1966; 49(2): 53–57.
42 McKibbins, S.W., Application of diffusion
theory to the washing of kraft
cooked wood chips. Tappi, 1960; 43(10):
801–805.
43 Christensen, T., C.C. Smith, L.F.
Abright, T.J. Williams, Modeling of
batch kraft pulping and of Kamyr digesters.
Pulp and Paper Canada, 1984;
85(8): 55–58, 60.
44 Andersson, N., D.I. Wilson,
U. Germgard. Validating continuous
References 491
kraft digester kinetic models with
online NIR measurements. In: American
Control Conference, Alaska, USA,
2002.
45 Pu, Q., W. McKean, R. Gustafson,
Kinetic model of softwood kraft pulping
and simulation of RDH process. Appita,
1991; 44(6): 399–404.
46 Norden, S., A. Teder, Modified kraft processes
for softwood bleached-grade
pulps. Tappi, 1979; 62(7): 49–51.
47 Lindgren, C.T., Kraft pulping kinetics
and modelling, the influence of HS-,
OH- and ionic strength. Royal Institute
of Technology: Stockholm, Sweden,
1997.
48 Gierer, J., I. Noren, On the course of
delignification during kraft pulping.
Holzforschung, 1980; 34: 197–200.
49 Gierer, J., The reactions of lignin during
pulping. A description and comparison
of conventional pulping processes.
Svensk. Papperstidn., 1970; 18: 571–596.
50 Ljunggren, S., The significance of aryl
ether cleavage in kraft delignification of
softwood. Svensk. Paperstidn., 1980;
83(13): 363–369.
51 Miksche, G., Uber das Verhalten des
Lignins bei der Alkalikochung. VI. Zum
Abbau von p-Hydroxy-phenylcumaranstrukturen
durch Alkali. Acta Chim.
Scand., 1972; 26(8): 3269–3274.
52 Miksche, G.E., Zum alkalischen Abbau
der p-Alkoxy-arylglycerin-b-aryletherstrukturen
des Lignins. Versuche mit
erythro-Veratrylglycerin-b-guajacylether.
Acta Chim. Scand., 1972; 26(8):
3275–3281.
53 Teder, A., L. Olm, Extended delignification
by combination of modified kraft
pulping and oxygen delignification.
Pap. Puu, 1981; 63(4a): 315–326.
54 Gierer, J., Chemical aspects of kraft
pulping. Wood Sci. Technol., 1980; 14:
241–266.
55 Chiang, V.L., M. Funaoka, Holzforschung,
1988; 42(6): 385.
56 Gustavsson, C.A.-S., C.T. Lindgren,
M.E. Lindstrom, Residual phase lignin
in kraft cooking related to the conditions
in the cook. Nordic Pulp Paper Res.
J., 1997; 12(4): 225–229.
57 Pekkala, O., Some features of residual
delignification during kraft pulping of
Sots Pine. Pap. Puu, 1983; 65(4): 251.
58 Gierer, J., F. Imsgard, I. Pettersson, Possible
condensation and polymerization
reactions of lignin fragments during
alkaline pulping processes. Appl. Polym.
Symp., 1976; 28: 1195.
59 Sjoblom, K., Extended delignification in
kraft cooking through improved selectivity.
Part 5. Influence of dissolved lignin
on the rate of delignification. Nordic
Pulp Paper Res. J., 1996; 3: 177–185.
60 Brunow, G., G.E. Miksche, Some reactions
of lignin in kraft and polysulfide
pulping. Appl. Polym. Symp., 1976; 28:
1155–1168.
61 Farkas, J., The dimensions of chip in
kraft pulping. Papir Celulosa, 1965;
20(1): 11–14.
62 Hatton, J.V., Quantitative evaluation of
pulpwood chip quality. Tappi, 1977;
60(4): 97–100.
63 Hatton, J.V., Screening mill chips for
sizeable savings. Pulp Paper Canada,
1977; 78(3): T57–T60.
64 Backmann, A., Flistjocklekens inverkan
pa cellulosautbyte och massakvallitet vid
kok av parallellipipedisk flis. Pap. Puu,
1946; 28(13): 200–208.
65 Backman, A., J. Finnish Paper Timber,
1946; 28(13): 200.
66 Hartler, N., K. Ostberg, Impregneringen
vid sulfatkoket. Svensk. Papperstidn.,
1959; 62(15): 524–533.
67 Stone, J.E., The penetrability of wood.
Pulp Paper Mag. Can., 1956; 57(7):
139–145.
68 Akhtaruzzamann, A.F.M., N.-E. Virkola,
Influence of chip dimensions in kraft
pulping. Part III. Effect on delignification
and a mathematical model for predicting
the pulping parameters. Pap.
Puu, 1979; 61(11): 737–758.
69 Akhtaruzzamann, A.F.M., N.-E. Virkola,
Influence of chip dimensions in kraft
pulping. Part IV. Effect on screened
pulp yield and effective alkali consumption;
predictive mathematical models.
Pap. Puu, 1979; 61(12): 805–814.
70 Chang, H.-M., K.V. Sarkanen, Species
variation in lignin. Effect of species on
the rate of Kraft delignification. Tappi,
1973; 56(3): 132–134.
492 4 Chemical Pulping Processes
71 Lee, Z.-Z., X.Q. Pau, International Symposium
on Wood Pulping Chemistry,
Vancouver, BC, 1985.
72 Epelde, I.G., C.T. Lindgren,
M.E. Lindstrom, Kinetics of wheat straw
delignification in soda and kraft pulping.
J. Wood Chem. Technol., 1998, 18(1):
69–82.
73 Cho, H.J., K.V. Sarkanen, Alternatives
to H-factor measurement in the kraft
process. Pap. Puu, 1985; 3: 121–124.
74 Christensen, T., et al., Dynamic modelling
of the Kamyr digester: normal
operation including hardwood-softwood
swings. Tappi, 1983; 66(11): 65–68.
75 Olm, L., P.J. Nelson, S.-E. Campbell,
The rate of delignification of Eucalyptus
disversicolor, E. regnans, E. marginata and
E. tetradonta woods during kraft pulping.
Appita, 1984; 37(4): 314–318.
76 Wilson, G., A.R. Procter, Reactions of
wood components with hydrogen sulphide:
Part V. The kinetics of kraft and
soda delignification of western hemlock.
Pulp Paper Mag. Can., 1970; 71(22):
67–71.
77 Farrington, A., P.F. Nelson, N. Vanderhoek,
A new alkaline pulping process.
Appita, 1977; 31(2): 119–120.
78 Timmel, T., Advances in Carbohydrate
Chemistry, ed. M.L. Wolfrom. Vol. 19.
New York: Academic Press, 1964.
79 Christensen, T., L.F. Albright,
T.J. Williams. A kinetic mathematical
model for the kraft pulping of wood. In:
TAPPI Annual Meeting, Atlanta, Georgia,
USA, 1983.
80 Kondo, R., K.V. Sarkanen, Kinetics of
lignin and hemicellulose dissolution
during the initial stage of alkaline pulping.
Holzforschung, 1984; 38(1): 31–36.
81 Schild, G., W. Muller, H. Sixta, Prehydrolysis
kraft and ASAM paper grade
pulping of eucalypt Wood. A kinetic
study. Das Papier, 1996; 50(1): 10–22.
82 Mortha, G., K. Sarkanen, R. Gustafson,
Alkaline pulping kinetics of short-rotation,
intensively cultured hybrid poplar.
Tappi J., 1992;00: 99–104.
83 Matthews, C.H., Carbohydrate losses at
high temperature in kraft pulping.
Svensk. Papperstidn., 1974; 77(17):
629–635.
84 Hartler, N., Penetrierung und Diffusionsverhalten
bei Sulfatkochung. Pap.
Puu, 1962; 7: 365–374.
85 Hagglund, O., Examensarbete. Royal
Institute of Technology: Stockholm,
1959.
86 Backstrom, C., Examensarbete. Royal
Institute of Technology: Stockholm,
1960.
87 Benko, J., The measurement of molecular
weight of lignosulfonic acids and
related material by diffusion. Tappi,
1964; 47(8): 508–514.
88 Rydholm, S., Pulping Processes. Malabar,
Florida: Robert E. Krieger Publishing
Company, 1965 p. 603.
89 Corbett,W.M., G.N. Richards, Svensk.
Papperstidn., 1957; 60: 791.
90 Giudici, R., S.W. Park, Kinetic model for
kraft pulping of hardwood. Ind. Eng.
Chem. Res., 1996; 35(3): 856–863.
91 Rydholm, S., Pulping Processes. Malabar,
Florida: Robert E. Krieger Publishing
Company, 1965, p. 586.
92 Nelson, P.J., G.M. Gniel, Delignification
of Eucalyptus regnans wood during
soda pulping. Appita, 1986; 39(2):
110–114.
93 Dolk, M., J.F. Yan, J.L. McCarthy, Lignin
25. Kinetics of delignification of Western
Helmlock in flow-through reactors
und alkaline conditions. Holzforschung,
1989; 43(2): 91–98.
94 Saucedo, V.M., G.A. Krishnagopalan,
Kinetics of conventional and alkali profiled
hardwood cooks using on-line
liquor analysis. Appita, 2002; 55(3): 202–
207, 223.
95 Larocque, G.L., O. Maass, The mechanism
of the alkaline delignification of
wood. Can. J. Res., 1941; 19(1): 1–16.
96 Waller, M.H., Y.N. Eyike, Soda anthraquinone
pulping of loblolly pine. A
kinetic study. J. Pulp Paper Sci., 1983;
9(3): 83–85.
97 Hakansdotter, L., L. Olm, The influence
of temperature on delignification and
carbohydrate degradation in soda-AQ
pulping of softwood. Nordic pulp Paper
Res. J., 2001; 16(3): 183–187.
98 Edwards, L., S.-E. Norberg, A. Teder,
Kinetics of the delignification in kraft
pulping. II. Bulk delignification of
References 493
birch. Svensk Papperstid., 1974; 77(3):
95–98.
Дата добавления: 2015-10-21; просмотров: 100 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Section 4.2.4 | | | Section 4.2.6 |