Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Как быстро распадаются атомы

Читайте также:
  1. Q-LaHHume думать и действовать в нужном направлении,с верой продвигайтесь к цели и быстро увидите новые пути, открытые вам.
  2. Адекватная оценка собственных действий не может быть быстрой, сделанной на основании одной попытки.
  3. Быстро выпрямившись; лицо ее было багровым, глаза были выпучены. - Я ее
  4. Быстро пошло вниз. Еще меньше я мог понять, почему в то же самое время
  5. Быстро с ним справился.
  6. Быстро! Надежно! Доступно!
  7. Быстро! Прячься в кладовку!” - прошипел Гарри, впихнул туда Добби, захлопнул дверцу и рухнул на кровать как раз когда дверь в комнату начала открываться.

 

Формулы, количественно характеризующие радиоактивный распад, в школе не изучают. Тем не менее они достаточно просты и позволяют провести интересные расчеты.

Если бы мы задались целью проследить за конкретным атомом радионуклида, мы бы не смогли предсказать, когда он распадется. Этот случайный процесс. Однако даже в мельчайшей пылинке содержится огромное число атомов, и если эти атомы радиоактивны, то их распад подчиняется строгим математическим закономерностям: в силу вступают статистические законы, которые описывают количественные изменения большого числа объектов. И оказывается, что каждый радионуклид можно охарактеризовать вполне определенной величиной— периодом полураспада (Т1/2). Есть радионуклиды-долгожители, для которых периоды полураспада исчисляются миллионами и даже миллиардами лет. Известны и короткоживущие радионуклиды, распадающиеся полностью за ничтожные доли секунды. Очевидно, что если имеется, например, 1 г радиоактивного вещества, то чем меньше период его полураспада, тем большей радиоактивностью будет обладать вещество.

Сейчас мы выведем формулу, которая показывает, как уменьшается число атомов радионуклида (а вместе с ним — и его радиоактивность) со временем. Пусть в начальный момент времени t=0 имеется N0 атомов радионуклида с периодом полураспада Т1/2 Как следует из определения периода полураспада, по прошествии промежутка времени t= Т 1/2 останется N0/2 атомов. Когда пройдет еще столько же времени (t = 2Т1/2), останется половина от N0/2 атомов, т. е. N0/4 и т. д. Рассуждая далее аналогично, получим ряд уменьшения числа атомов (табл. 2).

 

Последняя строчка легко выводится из предыдущих «по аналогии». Таким образом, если прошло n периодов полураспада (п = t / Т1/2), то останется N = N/2t/T1/2 атомов. Это и есть основная формула, по которой можно рассчитать, сколько атомов радионуклида останется через определенный промежуток времени t, если известно его начальное количество N0 и период полураспада Т1/2 Точно такая же формула позволяет рассчитать изменение радиоактивности со временем:

а = a0/ 2n,

где ао — начальная радиоактивность.

Здесь надо пояснить, что радиоактивность а — это число атомов, распадающихся в образце в единицу времени; радиоактивность пропорциональна имеющемуся числу атомов, поэтому она изменяется со временем так же, как и N.

На практике радиоактивность образца обычно характеризуют не общим числом происходящих в нем распадов, а пропорциональным ему числом импульсов I, которые регистрирует прибор, измеряющий радиоактивность (I= ка, где к — коэффициент пропорциональности). Очевидно, что и в этом случае формула имеет вид

I=I0/2n

По приведенным формулам можно определить, сколько останется радиоактивного вещества через определенное время или какова будет его активность, если известны период полураспада и начальное количество (или начальная активность) радионуклида. С другой стороны, зная начальную и конечную активность, а также время t, можно определить период полураспада.

Следует отметить, что приведенные формулы верны не только для целых, но и для дробных значений п. Правда, при нецелых п для расчетов потребуется знание логарифмов и использование калькулятора, производящего действия со степенями и логарифмами. Если же n — целое (т. е. прошло целое число периодов полураспада), то расчеты значительно упрощаются и часто их можно проделать даже в уме.

В качестве примера решим такую задачу. В лабораторию для биохимических исследований доставили препарат, меченный фосфором-32 (для этого радионуклида Т1/2 = 2 недели). Начальная активность образца составляла 512 импульсов в минуту в расчете на 1 мкг препарата. Можно ли будет использовать этот препарат для исследований через 12 недель, если для надежного измерения активность препарата должна быть не ниже 10 импульсов в минуту на 1 мкг?

Для решения этой задачи рассчитаем активность препарата к указанному сроку. По условию Iо = 512 имп./(мин х мкг), Т1/2 = 2 недели, t = 12 недель, п = 12/2 = 6. Подставляем эти значения в формулу и получаем, что через 12 недель (примерно 3 месяца) активность снизится до I= 512 / 26 = 512 / 64 = 8 имп.(мин х мкг). Следовательно, сотрудникам лаборатории отпущен сравнительно небольшой срок для решения стоящих перед ними научных задач — через 3 месяца придется заказывать новую партию дорогостоящего препарата. Отметим, что активность препарата, конечно, зависит от его общего количества, поэтому она отнесена к 1 микрограмму вещества; эта активность могла быть задана и в любых других единицах. Разумеется, числовые данные в этой задаче специально подобраны так, чтобы предельно облегчить расчеты. Например, если бы t было равно не 12, а, допустим, 12,8 неделям, пришлось бы возводить 2 в степень 12,8 / 2 = 6,4, что невозможно без калькулятора.

А вот более важный пример. Во время чернобыльской аварии из горящего реактора было выброшено большое количество очень опасного для человека радионуклида иод-131 1/2 = 8 суток). Опасен ли сейчас этот радионуклид? Поскольку с момента аварии прошло более 20 лет (т. е. более 900 периодов полураспада), количество иода-131 уменьшилось более чем в 2900 (или в 10400) раз. Это означает, что если бы в момент аварии (апрель 1986 года) вся Вселенная состояла только из иода-131, то уже через несколько лет от него не осталось бы ни единого атома!

Подобные расчеты для ученых не представляют большою труда. А вот точное и надежное измерение очень малых активностей является серьезной проблемой, которая занимает ученых уже целое столетие — с момента открытия самого явления радиоактивности. Повысив точность измерений слабых радиоактивных излучений, они добились значительных успехов в определении возраста многих археологических находок. Один из самых ярких примеров — радиоуглеродный метод анализа, о котором речь пойдет ниже.

 


Дата добавления: 2015-08-21; просмотров: 104 | Нарушение авторских прав


Читайте в этой же книге: Как растет кристалл | Вещества для опытов с кристаллами | Выращиваем кристаллы | Переохлажденные растворы | Золотой дождь» из кристаллов | Выращиваем кристаллы меди | ХИМИКИ РАЗГАДЫВАЮТ ТАЙНЫ СВЕЧЕНИЯ | Излучение раскаленных тел | Люминофоры — источники «холодного» света | Холодное «химическое» свечение |
<== предыдущая страница | следующая страница ==>
Страшное» слово — радионуклид| Что такое радиоуглерод и откуда он берется

mybiblioteka.su - 2015-2024 год. (0.007 сек.)