Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Отвод продукта реакции от поверхности.

Читайте также:
  1. Анализ результатов визуальной оценки состояния земляного полотна и водоотвода
  2. Анафилактические реакции на лекарственные препараты
  3. Биотические факторы среды. Гомо- гетеротипические реакции
  4. Взгляд отводить и видеть наизнанку
  5. Водоотвод и специальное оборудование.
  6. ВОЗМОЖНЫЕ РЕАКЦИИ ОРГАНИЗМА
  7. Глава 10. Секс-индустрия в Израиле: «громоотвод» или «гнезда разврата»?

При установившемся режиме реакции все три стадии ее про­текают с равными скоростями. При этом во многих случаях энер­гия активадии реакции невелика, и вторая стадия (собственно химическая реакция) могла бы протекать очень быстро, если бы подвод реагирующего вещества к поверхности и отвод продукта от нее тоже происходили бы достаточно быстро. Следовательно, скорость таких реакций определяется скоростью переноса веще­ства. Можно ожидать, что при усилении конвекции скорость их будет возрастать. Опыт подтверждает это предположение. Так, реакция горения угля

С + С2=СО2

химическая стадия, которой требует небольшой энергии активации, протекает тем быстрее, чем интенсивнее подается к углю кисло­род (или воздух). Однако не во всех случаях скорость гетерогенной реакции опре­деляется скоростью переноса вещества. Определяющей стадией реакций, энергия активации которых велика, является вторая стадия — собственно химическая реакция. Естественно, что скорость протекания таких реакций не будет возрастать при усилении пере­мешивания. Например, реакция окисления железа кислородом влажного воздуха не ускоряется при увеличении подачи воздуха к поверхности металла, поскольку здесь энергия активации хими­ческой стадии процесса значительна.

Стадия, определяющая скорость протекания реакции, назы­вается лимитирующей стадией. В первом примере лими­тирующей стадией является перенос вещества, во втором — соб­ственно химическая реакция.

 

62. Цепные реакции. До сих пор мы рассматривали химические реакции, протекающие сравнительно просто. В таких реакциях каждый элементарный акт взаимодействия — каждое столкнове­ние между активными молекулами реагирующих веществ — проте­кает независимо от результатов предшествующих элементарных актов. Образование макроскопических количеств продукта реакции является здесь результатом большого количества этих независя­щих друг от друга актов.

Существует, однако, обширная группа реакций, протекаю­щих более сложно. В этих реакциях возможность протекания каждого элементарного акта сопряжена с успешным исходом предыдущего акта и, в свою очередь, обусловливает возможность последующего. Здесь образование макроскопических количеств продукта реакции представляет собой результат цепи элемен­тарных актов взаимодействия. Такие реакции называются цеп­ными.

Цепные реакции протекают с участием активных центров — атомов, ионов или радикалов (осколков молекул), об­ладающих неспаренными электронами и проявляющих, вследствие этого, очень высокую реакционную активность. Роль активных центров могут играть, например, атомы Н •, Сl , О •• и группы атомов - ОН , CH3•.Обычно при обозначении активных частиц указывают точками только неспаренные электроны, например: Н •, Сl , О ••, ОН , CH3•.

При актах взаимодействия активных центров с молекулами исходных веществ образуются молекулы продукта реакции, а так­же новые активные частицы — новые активные центры, способные к акту взаимодействия. Таким образом, активные центры служат создателями цепей последовательных превращений веществ.

Простым примером цепной реакции может служить реакция синтеза хлороводорода

H2 + Cl2 + hv = 2 HCl

Эта реакция вызывается действием света. Поглощение кванта лучистой энергии hv молекулой хлора приводит к ее возбужде­нию— к появлению в ней энергичных колебаний атомов. Если энергия колебаний превышает энергию связи между атомами, то молекула распадается. Этот процесс фотохимической дис­социации можно выразить уравнением:

Cl2 + hv = 2 Сl

Образующиеся атомы хлора легко реагируют с молекулами водорода:

Сl • + 2 H = HCl + Н •

Атом водорода, в свою очередь, легко реагирует с молекулой хлора:

Н • + С12 = НСl + С1 •

Эта последовательность процессов продолжается дальше: в рассматриваемом случае число звеньев может достигать 100 000. Иначе говоря, один поглощенный квант света приводит к образованию до ста тысяч молекул HCI. Заканчивается цепь при столк­новении свободного атома со стенкой сосуда, в котором происходит реакция. Цепь может закончиться также при таком соударении двух активных частиц и одной неактивной, в результате которого активные частицы соединяются в молекулу, а выделяющаяся энергия уносится неактивной частицей. В подобных случаях про­исходит обрыв цепи.

Таков механизм цепной неразветвленной реакции; при каждом элементарном взаимодействии один активный центр об­разует кроме молекулы продукта реакции один новый активный центр. В двадцатых годах XX века Н. Н. Семенов (* Николай Николаевич Семенов (род. в 1896 г.) советский ака­демик, лауреат Ленинской, Государственной и Нобелевской премий, Герой Со­циалистического Труда. Им разработана и экспериментально обоснована тео­рия цепных реакций и создана на ее основе теория воспламенения и взрывов, имеющая большое практическое значение) совместно с со­трудниками, изучая кинетику различных процессов, открыл явле­ния, необъяснимые на основе существовавших в то время пред­ставлений о механизме химических реакций. Для их объяснения Н. Н. Семенов выдвинул теорию разветвленных цепных реакций, в ходе которых взаимодействие свободного радикала с молекулой исходного вещества приводит к образованию не одно­го, а двух или большего числа новых активных центров. Один нз них продолжает старую цепь, а другие дают начало новым; цепь разветвляется, и реакция прогрессивно ускоряется.

К разветвленным цепным реакциям относится, например, реакция образо­вания воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при нагревании или пропускании электрического разряда происходит взаимо­действие молекул этих газов с образованием двух гидроксильных радикалов:

Н2 + О2 = 2 ОН

Радикалы ОН легко реагируют с молекулой водорода

ОН + Н2 = Н2О + Н •,

что приводит к образованию молекулы воды и свободного атома водорода. Последний реагирует с молекулой О2, давая уже две новых активных частицы:

Н • + О2 = ОН • + О ••

Атом кислорода, реагируя с молекулой Н2, в свою очередь, может поро­дить два новых активных центра:

О •• + Н2 = Н • + ОН

Таким образом происходит прогрессивное увеличение числа активных час­тиц и, если обрывы цепей не препятствуют этому процессу, скорость реакции резко возрастает.

По цепному механизму протекают такие важные химические реакции, как горение, взрывы, процессы окисления углеводородов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакций служит научной основой ряда важных отраслей техники и химической технологии.

К цепным процессам относятся и ядерные цепные ре­акции, протекающие, например, в атомных реакторах или при взрыве атомной бомбы. Здесь роль активной частицы играет ней­трон, проникновение которого в ядро атома может приводить к его распаду, сопровождающемуся выделением большой энергии и образованием новых свободных нейтронов, продолжающих цепь ядерных превращений.

 

Необратимые и обратимые реакции. Химическое равновесие.

Все химические реакции можно разбить на две группы: необра­тимые и обратимые р е а к ц и и. Необратимые реакции про­текают до конца — до полного израсходования одного из реаги­рующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расхо­дуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном на­правлениях.

Рассмотрим два примера.

 

Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:

Zn+ 4HNO3 = Zn(NO3)2 + 2 N02↑ + 2 H2О

При достаточном количестве азотной кислоты реакция закон­чится только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении — про­пускать диоксид азота через раствор нитрата цинка, то металли­ческого цинка и азотной кислоты не получится — данная реакция не может протекать в обратном направлении. Таким образом, вза­имодействие цинка с азотной кислотой — необратимая реакция.

Пример 2. Синтез аммиака протекает согласно уравнению:

N2 + 3H2 → 2NH3

Если смешать один моль азота с тремя молями водорода, осу­ществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение ме­жду количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким обра­зом, синтез аммиака — обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

 

 

Рис.68. Изменение скорости прямой (V1) и обратной (V2) реакции с течением времени (t).

 

На рис. 68 показано изменение скоростей прямой и обратной реакций с течением времени. Вначале, при смешении исходных веществ, скорость прямой реакции велика, а скорость обратной ракщш равна нулю, По мере протекания реакции исходные вещества расходуются и их концентрации падают. В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их кон­центрация возрастает. Вследствие этого начинает идти обратная реакция, при­чем ее скорость постепенно увеличивает­ся. Когда скорости прямой и обратной реакций становятся оди­наковыми, наступает химическое равновесие. Так, в по­следнем примере устанавливается равновесие между азотом, во­дородом и аммиаком.

Химическое равновесие называют динамическим равнове­сием. Этим подчеркивается, что при равновесии протекают и пря­мая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Количественной характеристикой химического равновесия слу­жит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода:

Н2 + I2 2 НI

Согласно закону действия масс, скорости прямой (V1) и обрат­ной (V2) реакций выражаются уравнениями (Система рассматривается при повышенных температурах, когда иод находится в состоянии пара):

V1 = k 12]•[I2]; V2 = k2 [НI]2

При равновесии скорости прямой и обратной реакций

равны друг другу, откуда

k 12]•[I2] = k2 [НI]2

k 1/ k2 = [НI]2 /[Н2]•[I2]

Отношение констант скорости прямой и обратной реакций тоже представляет собой константу. Она называется константой равновесия данной реакции (К):

k 1/ k2 = K

Отсюда окончательно

[НI]2 / [Н2]•[I2] = К

В левой части этого уравнения стоят те концентрации взаимо­действующих веществ, которые устанавливаются при равнове­сии— равновесные концентрации. Правая же часть уравнения представляет собой постоянную (при постоянной темпе­ратуре) величину.

Можно показать, что в общем случае обратимой реакции

аА + вВ+... = рР + qQ+...

константа равновесия выразится уравнением:

К = [Р] р • [Q] q +.../ [А]а • [В]в +…

Здесь большие буквы обозначают формулы веществ, а малень­кие — коэффициенты в уравнении реакции.

Таким образом, при постоянной температуре константа равно­весия обратимой реакции представляет собой постоянную величи­ну, показывающую то соотношение между концентрациями продук­тов реакции (числитель) и исходных веществ (знаменатель), кото­рое устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотно­шение между ними вновь отвечает константе равновесия.

Численное значение константы равновесия в первом приближе­нии характеризует выход (Выходом реакции называется отношение количества получаемого вещества к тому его количеству, которое получилось бы при протекании дни до конца) данной реакции.

Например, при К >> 1 выход реакции велик, потому что

при этом [Р] р • [Q] q >>[А]а • [В]в,т. е. при равновесии

концентрации продуктов реакции много больше концентраций исходных веществ, а это и означает, что вы­ход реакции велик. При К << 1 (по аналогичной причине) выход реакции мал.

В случае гетерогенных реакций в выражение константы равно­весия, так же как и в выражение закона действия масс входят концентрации только тех веществ, которые находятся в га­зовой или жидкой фазе. Например, для реакции

СО2 + С = 2СО

константа равновесия имеет вид:

К = [СО]2/[СО2]

Величина константы равновесия зависит от природы реагирую­щих веществ и от температуры. От присутствия катализаторов она ке зависит. Как уже сказано, константа равновесия равна отноше­нию констант скорости прямой и обратной реакции. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину, то на отношение констант их скорости он не оказывает влияния. Поэтому катали­затор не влияет на величину константы равновесия и, следователь­но, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.

 


Дата добавления: 2015-08-21; просмотров: 89 | Нарушение авторских прав


Читайте в этой же книге: Глава VI/ ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ | Факторы, определяющие направление протекания химиче­ских реакций. | Стандартные термодинамические величины. Химико-термо­динамические расчеты. |
<== предыдущая страница | следующая страница ==>
Скоростью гомогенной реакции называется количество веще­ства, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы.| Смещение химического равновесия. Принцип Ле Шателье.

mybiblioteka.su - 2015-2024 год. (0.014 сек.)