Читайте также:
|
|
При установившемся режиме реакции все три стадии ее протекают с равными скоростями. При этом во многих случаях энергия активадии реакции невелика, и вторая стадия (собственно химическая реакция) могла бы протекать очень быстро, если бы подвод реагирующего вещества к поверхности и отвод продукта от нее тоже происходили бы достаточно быстро. Следовательно, скорость таких реакций определяется скоростью переноса вещества. Можно ожидать, что при усилении конвекции скорость их будет возрастать. Опыт подтверждает это предположение. Так, реакция горения угля
С + С2=СО2
химическая стадия, которой требует небольшой энергии активации, протекает тем быстрее, чем интенсивнее подается к углю кислород (или воздух). Однако не во всех случаях скорость гетерогенной реакции определяется скоростью переноса вещества. Определяющей стадией реакций, энергия активации которых велика, является вторая стадия — собственно химическая реакция. Естественно, что скорость протекания таких реакций не будет возрастать при усилении перемешивания. Например, реакция окисления железа кислородом влажного воздуха не ускоряется при увеличении подачи воздуха к поверхности металла, поскольку здесь энергия активации химической стадии процесса значительна.
Стадия, определяющая скорость протекания реакции, называется лимитирующей стадией. В первом примере лимитирующей стадией является перенос вещества, во втором — собственно химическая реакция.
62. Цепные реакции. До сих пор мы рассматривали химические реакции, протекающие сравнительно просто. В таких реакциях каждый элементарный акт взаимодействия — каждое столкновение между активными молекулами реагирующих веществ — протекает независимо от результатов предшествующих элементарных актов. Образование макроскопических количеств продукта реакции является здесь результатом большого количества этих независящих друг от друга актов.
Существует, однако, обширная группа реакций, протекающих более сложно. В этих реакциях возможность протекания каждого элементарного акта сопряжена с успешным исходом предыдущего акта и, в свою очередь, обусловливает возможность последующего. Здесь образование макроскопических количеств продукта реакции представляет собой результат цепи элементарных актов взаимодействия. Такие реакции называются цепными.
Цепные реакции протекают с участием активных центров — атомов, ионов или радикалов (осколков молекул), обладающих неспаренными электронами и проявляющих, вследствие этого, очень высокую реакционную активность. Роль активных центров могут играть, например, атомы Н •, Сl •, О •• и группы атомов - ОН •, CH3•.Обычно при обозначении активных частиц указывают точками только неспаренные электроны, например: Н •, Сl •, О ••, ОН •, CH3•.
При актах взаимодействия активных центров с молекулами исходных веществ образуются молекулы продукта реакции, а также новые активные частицы — новые активные центры, способные к акту взаимодействия. Таким образом, активные центры служат создателями цепей последовательных превращений веществ.
Простым примером цепной реакции может служить реакция синтеза хлороводорода
H2 + Cl2 + hv = 2 HCl
Эта реакция вызывается действием света. Поглощение кванта лучистой энергии hv молекулой хлора приводит к ее возбуждению— к появлению в ней энергичных колебаний атомов. Если энергия колебаний превышает энергию связи между атомами, то молекула распадается. Этот процесс фотохимической диссоциации можно выразить уравнением:
Cl2 + hv = 2 Сl •
Образующиеся атомы хлора легко реагируют с молекулами водорода:
Сl • + 2 H = HCl + Н •
Атом водорода, в свою очередь, легко реагирует с молекулой хлора:
Н • + С12 = НСl + С1 •
Эта последовательность процессов продолжается дальше: в рассматриваемом случае число звеньев может достигать 100 000. Иначе говоря, один поглощенный квант света приводит к образованию до ста тысяч молекул HCI. Заканчивается цепь при столкновении свободного атома со стенкой сосуда, в котором происходит реакция. Цепь может закончиться также при таком соударении двух активных частиц и одной неактивной, в результате которого активные частицы соединяются в молекулу, а выделяющаяся энергия уносится неактивной частицей. В подобных случаях происходит обрыв цепи.
Таков механизм цепной неразветвленной реакции; при каждом элементарном взаимодействии один активный центр образует кроме молекулы продукта реакции один новый активный центр. В двадцатых годах XX века Н. Н. Семенов (* Николай Николаевич Семенов (род. в 1896 г.) советский академик, лауреат Ленинской, Государственной и Нобелевской премий, Герой Социалистического Труда. Им разработана и экспериментально обоснована теория цепных реакций и создана на ее основе теория воспламенения и взрывов, имеющая большое практическое значение) совместно с сотрудниками, изучая кинетику различных процессов, открыл явления, необъяснимые на основе существовавших в то время представлений о механизме химических реакций. Для их объяснения Н. Н. Семенов выдвинул теорию разветвленных цепных реакций, в ходе которых взаимодействие свободного радикала с молекулой исходного вещества приводит к образованию не одного, а двух или большего числа новых активных центров. Один нз них продолжает старую цепь, а другие дают начало новым; цепь разветвляется, и реакция прогрессивно ускоряется.
К разветвленным цепным реакциям относится, например, реакция образования воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при нагревании или пропускании электрического разряда происходит взаимодействие молекул этих газов с образованием двух гидроксильных радикалов:
Н2 + О2 = 2 ОН •
Радикалы ОН • легко реагируют с молекулой водорода
ОН • + Н2 = Н2О + Н •,
что приводит к образованию молекулы воды и свободного атома водорода. Последний реагирует с молекулой О2, давая уже две новых активных частицы:
Н • + О2 = ОН • + О ••
Атом кислорода, реагируя с молекулой Н2, в свою очередь, может породить два новых активных центра:
О •• + Н2 = Н • + ОН •
Таким образом происходит прогрессивное увеличение числа активных частиц и, если обрывы цепей не препятствуют этому процессу, скорость реакции резко возрастает.
По цепному механизму протекают такие важные химические реакции, как горение, взрывы, процессы окисления углеводородов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакций служит научной основой ряда важных отраслей техники и химической технологии.
К цепным процессам относятся и ядерные цепные реакции, протекающие, например, в атомных реакторах или при взрыве атомной бомбы. Здесь роль активной частицы играет нейтрон, проникновение которого в ядро атома может приводить к его распаду, сопровождающемуся выделением большой энергии и образованием новых свободных нейтронов, продолжающих цепь ядерных превращений.
Необратимые и обратимые реакции. Химическое равновесие.
Все химические реакции можно разбить на две группы: необратимые и обратимые р е а к ц и и. Необратимые реакции протекают до конца — до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.
Рассмотрим два примера.
Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:
Zn+ 4HNO3 = Zn(NO3)2 + 2 N02↑ + 2 H2О
При достаточном количестве азотной кислоты реакция закончится только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении — пропускать диоксид азота через раствор нитрата цинка, то металлического цинка и азотной кислоты не получится — данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой — необратимая реакция.
Пример 2. Синтез аммиака протекает согласно уравнению:
N2 + 3H2 → 2NH3
Если смешать один моль азота с тремя молями водорода, осуществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение между количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким образом, синтез аммиака — обратимая реакция.
В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.
Рис.68. Изменение скорости прямой (V1) и обратной (V2) реакции с течением времени (t).
На рис. 68 показано изменение скоростей прямой и обратной реакций с течением времени. Вначале, при смешении исходных веществ, скорость прямой реакции велика, а скорость обратной ракщш равна нулю, По мере протекания реакции исходные вещества расходуются и их концентрации падают. В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их концентрация возрастает. Вследствие этого начинает идти обратная реакция, причем ее скорость постепенно увеличивается. Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие. Так, в последнем примере устанавливается равновесие между азотом, водородом и аммиаком.
Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.
Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода:
Н2 + I2 ↔ 2 НI
Согласно закону действия масс, скорости прямой (V1) и обратной (V2) реакций выражаются уравнениями (Система рассматривается при повышенных температурах, когда иод находится в состоянии пара):
V1 = k 1[Н2]•[I2]; V2 = k2 [НI]2
При равновесии скорости прямой и обратной реакций
равны друг другу, откуда
k 1 [Н2]•[I2] = k2 [НI]2
k 1/ k2 = [НI]2 /[Н2]•[I2]
Отношение констант скорости прямой и обратной реакций тоже представляет собой константу. Она называется константой равновесия данной реакции (К):
k 1/ k2 = K
Отсюда окончательно
[НI]2 / [Н2]•[I2] = К
В левой части этого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии— равновесные концентрации. Правая же часть уравнения представляет собой постоянную (при постоянной температуре) величину.
Можно показать, что в общем случае обратимой реакции
аА + вВ+... = рР + qQ+...
константа равновесия выразится уравнением:
К = [Р] р • [Q] q +.../ [А]а • [В]в +…
Здесь большие буквы обозначают формулы веществ, а маленькие — коэффициенты в уравнении реакции.
Таким образом, при постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.
Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.
Численное значение константы равновесия в первом приближении характеризует выход (Выходом реакции называется отношение количества получаемого вещества к тому его количеству, которое получилось бы при протекании дни до конца) данной реакции.
Например, при К >> 1 выход реакции велик, потому что
при этом [Р] р • [Q] q >>[А]а • [В]в,т. е. при равновесии
концентрации продуктов реакции много больше концентраций исходных веществ, а это и означает, что выход реакции велик. При К << 1 (по аналогичной причине) выход реакции мал.
В случае гетерогенных реакций в выражение константы равновесия, так же как и в выражение закона действия масс входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции
СО2 + С = 2СО
константа равновесия имеет вид:
К = [СО]2/[СО2]
Величина константы равновесия зависит от природы реагирующих веществ и от температуры. От присутствия катализаторов она ке зависит. Как уже сказано, константа равновесия равна отношению констант скорости прямой и обратной реакции. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину, то на отношение констант их скорости он не оказывает влияния. Поэтому катализатор не влияет на величину константы равновесия и, следовательно, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.
Дата добавления: 2015-08-21; просмотров: 89 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объема системы. | | | Смещение химического равновесия. Принцип Ле Шателье. |