Читайте также:
|
|
Первые предложения по техническому использованию эффекта Холла были высказаны на рубеже XIX и XX вв. Реальная база для этого возникла, однако, значительно позднее, а именно со времени разработки технологии получения полупроводниковых материалов, характеризующихся значительными подвижностями носителей тока. К этим материалам относятся: германий Ge, кремний Si, антимонид и арсенид индия InSb и InAs, арсенид - фосфид индия InAsP, арсенид галлия GaAs, селенид и теллурид ртути HgSe и HgTe. За последние годы в технологических лабораториях разработано несколько новых материалов, например, кадмий-ртуть-теллур CdHgTe, арсенид кадмия Cd3As2, которые также могут быть пригодны для технических применений эффекта Холла.
Одновременно с развитием технологии полупроводниковых материалов, в которых эффект Холла проявляется в сильной степени, отмечается прогресс и в области полупроводниковых приборов, работа которых основана на этом эффекте. Для электродного элемента, в основе работы которого лежит эффект Холла и который представляет собой полупроводниковую пластину с выводами и защитной оболочкой, в русской литературе принято название датчик Холла.
Требования, предъявляемые к датчикам Холла, разнообразны и зависят от их назначения. До настоящего времени нет такого материала, который обладал бы всеми требуемыми параметрами. Ряд материалов отвечает только некоторым требованиям. Поэтому из множества полупроводниковых материалов, в которых наблюдается эффект Холла, для датчиков Холла выбирается тот или иной материал в зависимости от конкретной пели применения датчика.
Обычно для элементов Холла используются материалы n-типа. т. е. с электронной проводимостью, так как подвижность носителей тока в них в несколько раз (от двух до нескольких десятков) больше, чем в материалах р-типа. Основными параметрами полупроводниковых материалов, используемых для изготовления датчиков Холла, считаются: удельное сопротивление (иногда удобно употреблять удельную электрическую проводимость ), коэффициент Холла и подвижность. Все эти параметры являются зависимыми от концентрации носителей тока, температуры и магнитной индукции; может также проявляться анизотропия этих зависимостей. Кроме того, существует целый ряд эффектов, сопровождающих явления Холла таких как термо-э. д. с, гальвано- и термомагнитные эффекты.
Идеальный датчик Холла должен обладать следующими свойствами:
1) большой чувствительностью;
2) большим выходным напряжением;
3) большим к. п. д. и большой мощностью, снимаемой с электродов Холла;
4) независимостью параметров от температуры;
5) линейностью относительно Ix, Вz и R (активное сопротивление нагрузки).
Из свойств полупроводниковых материалов, следует, что перечисленные требования являются, в общем, противоречивыми и все одновременно не могут быть выполнены. По этой причине проектирование датчиков Холла необходимо проводить с учетом их конкретного назначения, не обращая особого внимания на менее существенные параметры и стараясь получить соответствующие значения заданных параметров.
В ряде конкретных применений появляются дополнительные требования, такие как:
1) малая толщина датчика Холла - в случае работы в узких зазорах;
2) малые размеры активной поверхности – в случаи исследования распределения неоднородности магнитного поля.
Дата добавления: 2015-08-13; просмотров: 103 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Теоретические сведения | | | Технология изготовления датчиков Холла |