Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Парная линейная корреляция

Читайте также:
  1. Иерархический тип структур управления. Линейная организационная структура.
  2. Корреляция выраженности свойств эмоциональности с выраженностью эмоций различной модальности
  3. Линейная организационная структура
  4. Линейная организационная структура
  5. Линейная организационная структура управления.
  6. Линейное действительное пространство. Линейная зависимость и независимость
  7. Линейные ДУВП. Задача Коши. Т. Коши-Пикара. Однородные и неоднородные уравнения. Некоторые свойства решений ЛОДУ. Линейная независимость системы функций. Определитель Вронского.

Простейшей системой корреляционной связи является линейная связь между двумя признаками - парная линейная корреляция. Подобные системы встречаются в тех случаях, когда среди всех действующих факторов выделяется один важнейший, который и определяет вариацию результативного признака, а нелинейные формы связей без особого ущерба могут быть преобразованы в линейные.

Зависимость , называется уравнением регрессии y по x или линейной корреляционной зависимостью между y и x.

где – среднее значение результативного признака Y при определенном значении факторного признака X;

b – свободный член уравнения;

а – коэффициент регрессии, характеризующий вариацию Y, приходящуюся на единицу вариации X.

Коэффициенты уравнения регрессии рассчитываются по методу наименьших квадратов.

Параметр a определяется из соотношения

,

где – среднее значение случайной величины x×y;

и – средние значения факторного и результативного признаков соответственно;

sx – среднее квадратичное отклонение признака X;

xi и yi - индивидуальные значения соответствующих признаков.

Параметр b выражают из уравнения регрессии и вычисляют, подставляя средние значения признаков X и Y и найденное значение параметра а:

.

При парной связи ее теснота измеряется с помощью коэффициента корреляции:

Соотношение между значением модуля коэффициента корреляции и теснотой связи представлено в таблице 10.

Таблица 10

Значение модуля коэффициента корреляции Характер связи
0,00 – 0,30 крайне слабая или отсутствует
0,30 – 0,50 слабая
0,50 – 0,70 средняя
0,70 – 0,99 сильная

 

Рассматривая возможные значения коэффициента корреляции, следует учитывать, что нулевая величина этого коэффициента соответствует полному отсутствию какой-либо связи. Это возможно при полном взаимном погашении положительных и отрицательных отклонений признаков от их средних величин. Поскольку вероятность этого крайне мала для любой реальной совокупности, кроме бесконечно большой, то коэффициент корреляции для реальной совокупности отличен от нуля и при отсутствии связи!

Значение коэффициента корреляции, равное 1 (или -1) соответствует функциональной связи. Чем ближе связь к функциональной, тем ближе абсолютная величина коэффициента корреляции к единице. Отрицательное значение коэффициента корреляции свидетельствует об обратной зависимости.

Значение коэффициента корреляции можно посчитать с помощью функции КОРРЕЛ, встроенной в табличном процессоре MS Excel, это облегчит рутинные математические подсчеты. Так же в MS Excel можно построить на графике и эмпирическую ломаную, и уравнение регрессии.

Пример 7. Определение корреляции между числом преступлений, связанных с незаконным оборотом наркотиков, в Новосибирской и Омской областях (данные взяты с официального сайта Федеральной службы государственной статистики РФ www.gks.ru и приведены в таблице 11 (в ед., значение показателя за год)).

Таблица 11.

Можно изобразить графически динамические ряды данного вида преступлений в Новосибирской и Омской области (см. рис. 9).

Рис. 9. Динамика преступлений, связанных с незаконным оборотом наркотиков в Новосибирской и Омской областях

Проанализировав график, можно предположить, что эти данные будут коррелировать между собой. Рассчитав коэффициент корреляции, получаем, что , это означает, что корреляционная связь между признаками прямая и сильная. Изобразим графически эмпирические данные и построим прямую регрессии. Табличный процессор MS Excel позволяет нам автоматически строить прямую регрессии и указывать ее уравнение на диаграмме.

Рис. 10. Корреляционная зависимость числа преступлений, связанных с незаконным оборотом наркотиков Новосибирской и Омской областях


Дата добавления: 2015-08-09; просмотров: 92 | Нарушение авторских прав


Читайте в этой же книге: Первичная обработка материалов массовых статистических наблюдений. | Графическое представление статистического распределения | Средние величины и их применение в юридической статистике. | Показатели вариации признака. | Понятие о рядах динамики и их виды | Показатели, характеризующие тенденцию динамики | Расчет параметров тренда | Показатели колеблемости | Прогнозирование на основе тренда и колеблемости | Функциональная и корреляционная зависимости |
<== предыдущая страница | следующая страница ==>
Задачи корреляционно-регрессионного анализа| Основы юридической статистики

mybiblioteka.su - 2015-2025 год. (0.008 сек.)