Читайте также: |
|
Восьмеричная система счисления
В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает — как и в десятичном числе — просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т. д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.
Шестнадцатеричная система счисления:
Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: А, В, С, D, Е, F. Цифра 1, записанная в самом младшем разряде, означает просто единицу. Та же цифра 1 в следующем разряде — 16 (десятичное), в следующем — 256 (десятичное) и т. д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.
http://popoff.donetsk.ua/text/donntu/odm/theory/enumeration/10-x.html
Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную и обратно
1. Для того чтобы перевести число из двоичной системы в восьмеричную, необходимо выполнить следующие действия. Двигаясь от запятой влево и вправо, разбить двоичное число на группы по три разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду заменить соответствующей восьмеричной цифрой.
Пример. Перевести число 10011001111,0101 из двоичной системы в восьмеричную.
Решение:
Триады | , | ||||||
Восьмеричные цифры | , |
Ответ: 2317,248.
Двоичная арифметика
Правила выполнения арифметических действий над двоичными числами задаются таблицами двоичных сложения, вычитания и умножения.
Таблица двоичного сложения | Таблица двоичного вычитания | Таблица двоичного умножения |
0+0=0 0+1=1 1+0=1 1+1=10 | 0-0=0 1-0=1 1-1=0 10-1=1 | 0 0=0 0 1=0 1 0=0 1 1=1 |
При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.
Пример. Выполнить сложение двоичных чисел:
а) X=1101, Y=101;
Результат 1101+101=10010.
б) X=1101, Y=101, Z=111;
Результат 1101+101+111=11001.
При вычитании двоичных чисел в данном разряде при необходимости занимается 1 из старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда.
Пример. Заданы двоичные числа X=10010 и Y=101. Вычислить X-Y.
Результат 10010 - 101=1101.
Умножение двоичных чисел производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.
Пример. 1001 101=?
Результат 1001 101=101101.
Деление двоичных чисел производится по тем же правилам, что и для десятичных. При этом используются таблицы двоичного умножения и вычитания.
Пример. 1100.011: 10.01=?
Результат 1100.011: 10.01=101.1.
Дата добавления: 2015-08-09; просмотров: 122 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
И основные результаты их выполнения (по данным апробации) | | | Сегментные регистры |