Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Индикаторы в методе кислотно-основного титрования

Читайте также:
  1. В Интернете всякая противоречивая информация о методе Бронникова. Не знаешь, как к этому относиться».
  2. О ДОКАЗАТЕЛЬСТВЕ, МЕТОДЕ И СИСТЕМЕ
  3. Расчёт отклонений при нормативном методе
  4. Слайд 3. Момент признания расходов, связанных с производством и реализацией, при методе начисления
  5. Слайд 4. Момент признания внереализационных расходов при методе начисления
  6. Термоиндикаторы и транзисторы-датчики температуры.

В методах кислотно-основного титрования для определения конечной точки титрования используют кислотно-основные индикаторы. Кислотно-основные индикаторы - это органические вещества, способные видимо и обратимо изменять свою окраску в растворе при изменении рН среды. Существуют различные теории индикаторов, каждая из которых по-свое­му объясняет поведение кислотно-основных индикаторов в кислых и щелоч­ных средах.

Ионная теория индикаторов. В связи с тем, что кислотно-основные индикаторы представляют собой слабые кислоты или слабые основания, любой индикатор диссоциирует в растворе согласно уравнению:

HInd ↔ Н+ + Ind­-

бесцветный малиновый

Окраска раствора, в котором индикатор находится в молекулярной форме (HInd), отличается от окраски раствора, в котором индикатор находится в ионной форме (Ind -). Так, моле-кулы фенолфталеина HInd бесцветны, а его анионы Ind - окра­шены в малиновый цвет. Достаточно к раствору, содержащему фенолфталеин, прибавить 1-2 кап­ли щелочи, как введенные ОН--ионы станут связывать катионы Н+ с образо­ванием слабого электролита - молекул воды. При этом равновесие диссоци­ации индикатора сместится вправо, и накопление анионов Ind­- вызовет окра­шивание раствора в малиновый цвет.

Переход одной окраски, присущей молекулярной форме кислотно-основного индикатора, в другую, свойственную его ионной форме, происходит под влиянием Н+ или ОН--ионов, то есть зависит от рН раствора.

Хромофорная теория индикаторов. Поведение индикаторов, объясняемое ионной теорией индикаторов, дополняется хромо-форной теорией индикато­ров, согласно которой изменение окраски индикаторов связано с изменением структуры их молекул, внутримолекулярной перегруппировкой, вызываемой действием Н+ или ОН--ионов. По хромофорной теории в процессе изменения рН раствора меняется стро­ение молекул кислотно-основных индикаторов. Это явление обусловливается бензоидно-хиноидной таутомерией. При изменении рН среды раствора или при диссоциации хромофоры могут перегруппировываться. Перемена окраски у индикаторов является результатом изменений в их внутреннем строении. У одноцветных индика­торов окраска изменяется в связи с появлением или исчезновением хромофо­ров. У двухцветных индикаторов эти изменения обусловлены превращением одних хромофоров в другие.

Типичным одноцветным индикатором является фенол-фталеин. При рН < 8 его молекулы не содержат хиноидной груп-пировки и поэтому бесцветны. Однако при добавлении раствора щелочи к раствору фенолфталеина (рН = 8) про­исходит перегруппировка атомов в молекуле с образованием хиноидной груп­пировки, которая обусловливает появление малиновой окраски раствора:

 

9) Кривые титрования

Кривые титрования в методе нейтрализации представляют собой графическое изображение изменения рН раствора в процессе титрования в зависимости от количества добавленного титранта (см. рис. 12.4.1-12.4.3).

В зависимости от относительной силы кислот и оснований, участвующих в реакции, различают различные случаи титрования, каждый из которых описывается собственной кривой титрования. Ниже будут рассмотрены четыре типа построения кривых титрования: титрование сильных и слабых кислот сильным основанием; титрование сильных и слабых оснований сильными кислотами.

При построении кривых титрования выделяют следующие основные области расчета рН:

  1. расчет рН до начала титрования;
  2. в процессе титрования до точки эквивалентности;
  3. в точке эквивалентности;
  4. после достижения точки эквивалентности.

До начала титрования значение рН титруемого раствора определяется концентрацией (для сильных кислот и оснований) и константой диссоциации (для слабых кислот и оснований) титруемого раствора; после точки эквивалентности – концентрацией титранта.

В промежуточных точках титрования факторы, определяющие рН титруемого раствора, различны и зависят от того, какое вещество титруют.

Особое значение имеет расчет скачка на кривой титрования. Скачок титрования – это резкое изменение рН вблизи точки эквивалентности. Начало скачка соответствует недостатку в 0,1 % прибавленного титранта (т. е. добавлено 99,9 % титрата), а конец скачка соответствует избытку добавленного титранта в количестве 0,1 %. Скачок титрования – наиболее существенная часть кривой титрования, т. к. именно по нему производят выбор индикатора.

Величина и положение (по шкале pH) скачка титрования зависят от силы титруемой кислоты и основания. Чем больше скачок на кривой титрования, тем меньше погрешность титрования, связанная с выбором индикатора.

Кривая титрования сильной кислоты сильным основанием (и наоборот)

При построении кривой титрования сильной кислоты щелочью следует учитывать, что до начала титрования рН раствора сильной кислоты определяют по формуле pH = - lg скисл (для одноосновной кислоты).

До точки эквивалентности в растворе будет присутствовать избыток неоттитрованной сильной кислоты, следовательно, избыток H+-ионов (рН < 7); за точкой эквивалентности в растворе будет находиться избыток щелочи, т. е. избыток [ OH-] - ионов (рН > 7).

В точке эквивалентности в растворе существует соль сильной кислоты и сильного основания, которая не подвергается гидролизу, и среда будет нейтральная (рН = 7).

Для расчета избыточного содержания [H+]-, [ OH-] -ионов используют формулы, учитывающие разбавление раствора за счет добавления титранта.

В случае титрования одноосновных кислот получают следующие формулы:

(12.4.1)

pH = - lg[ H+]изб;

(12.4.2)

pH = 14 - pOH = 14 = lg [OH-]изб

где скисл, сосн – молярная концентрация кислоты, основания, моль/л.

Пример.
Построить кривую титрования 10,0 мл 0,1 М HСl раствором 0,1 М NaOH.

Решение.
Расчет кривой титрования начинается с расчета рН исходного титруемого раствора: рН = - lg 0,1 = 1,0.

Рассмотрим несколько примеров расчета рН до точки эквивалентности (в растворе присутствует неоттитрованная кислота).

Пусть добавлено 5,0 мл 0,1 М NaOH. Концентрация [H+] – ионов равна

pH = -lg [H+]изб = -lg 0,033 = 1,5

Аналогично рассчитываются любые другие точки на кривой титрования до точки эквивалентности (данные приведены в табл. 12.4.1), в том числе и рН в начале скачка на кривой титрования. В этом случае недотитровано 0,1 % кислоты, т. е. добавлено NaOH на 0,1 % меньше, чем требуется для полной нейтрализации HCl. Так как концентрации кислоты и щелочи равны, то это означает, что щелочи добавлено 9,99 мл (10,0 мл составляет 100 %):

pH = -lg5 · 10-5 = 4,3

Конец скачка рассчитывается для избыточного содержания в растворе NaOH в количестве 0,1 %, т. е. всего добавлено 10,01 мл 0,1 М NaOH. В этом случае

pH = 14 + lg[OH-]изб = 14 + lg5· 10-5 = 9,7

Аналогично рассчитываются все другие точки на кривой титрования за точкой эквивалентности. Например, добавлено 11,0 мл 0,1 М NaOH:

pH = 14 lg[OH-]изб = 14 + lg5· 10-3 = 11,7

 

 

4.

Физико-химические методы анализа, основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет собой величину физического свойства, функционально связанную сконцентрацией или массой определяемого компонента. Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов и др.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества (кондуктометрия, кулонометрия, потенциометрия и т. д.), а также хроматография (например,газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей химических реакций (кинетические методы анализа), тепловых эффектов реакций (термометрическое титрование, смотри Калориметрия), а также на разделенииионов в магн. поле (масс-спектрометрия).

При выполнении физико-химических методов анализа используют специальную, иногда довольно сложную, измерительную аппаратуру, в связи с чем эти методы часто называют инструментальными. Многие современные приборы оснащены встроенными ЭВМ, которые позволяют находить оптимальные условия анализа (напр., спектральную область получения наиболее точных результатов при анализе смеси окрашенных веществ), выполняют расчеты и т. д

Почти во всех физико-химических методов анализа применяют два основных приема: методы прямых измерений и титрования. В прямых методах используют зависимость аналитического сигнала от природы анализируемого вещества и его концентрации. Зависимость сигнала от природы вещества - основа качественного анализа (потенциал полуволны вполярографии и т.д.). В некоторых методах связь аналитического сигнала с природой вещества установлена строго теоретически. Например, спектр атома водорода может быть рассчитан по теоретически выведенным формулам. В количественном анализе используют зависимость интенсивности сигнала от концентрации вещества. Чаще всего она имеет вид I = a + bс (уравнение связи), где I - интенсивность сигнала (сила диффузионного тока в полярографии, оптическая плотность в спектрофотометрии и т. д.), с - концентрация, а и b - постоянные, причем во многих случаях а = 0 (спектрофотометрия, полярография и др.). В ряде физико-химических методов анализа уравнение связи установлено теоретически, например закон Бугера-Ламберта-Бера, уравнение Ильковича.

Численные значения констант в уравнении связи определяют экспериментально с помощью стандартных образцов, стандартных растворов и т.д. Только в кулонометрии, основанной на законе Фарадея, не требуется определение констант.

Наибольшее распространение в практике получили следующие методы определения констант уравнения связи или, что то же самое, методы количеств, анализа с помощью физико-химических измерений:

1) Метод градуировочного графика. Измеряют интенсивность аналитического сигнала у нескольких стандартных образцов или стандартных растворов и строят градуировочный график в координатах I = f (с) или I = f (lg c), где с -концентрация компонента в стандартном растворе или стандартном образце. В тех же условиях измеряют интенсивность сигнала у анализируемой пробы и по градуировочному графику находят концентрацию.

2) Метод молярного свойства применяют в тех случаях, когда уравнение связи I = bc соблюдается достаточно строго. Измеряют аналитический сигнал у нескольких стандартных образцов или растворов и рассчитывают b = I ст / с ст; если с ст измеряется в моль/л, то b -молярное свойство. В тех же условиях измеряют интенсивность сигнала у анализируемой пробы Ix и по соотношению cx = Ix /b или cx = c ст Ix /I СТ рассчитывают концентрацию.

3) Метод добавок. Измеряют интенсивность аналитического сигнала пробы Ix, а затем интенсивность сигнала пробы с известной добавкой стандартного раствора Ix+ ст t . Концентрацию вещества в пробе рассчитывают по соотношению сx = с ст Ix/(Ix+ ст - Ix).

Методы титрования. Измеряют интенсивность аналитического сигнала I в зависимости от объема V добавленного титранта. По кривой титрования I=f (V)находят точку эквивалентности и рассчитывают результат по обычным формулам титриметрического анализа.

Физико-химические методы анализа часто используют при определении низких содержаний (порядка 10-3% и менее), где классические химические методы анализа обычно неприменимы. В области средних и высоких концентраций химические и физико-химические методы анализа успешно конкурируют между собой, взаимно дополняя друг друга. Физико-химические методы анализа развиваются в направлении поиска новых химических аналитических свойств вещества, увеличения точности анализа, конструирования новых прецизионных аналитических приборов, совершенствования существующих методик и автоматизации анализа. Интенсивно развивается в последнее время проточно-ижкекционный анализ - один из наиболее универсальных вариантов автоматизированного анализа, основанный на дискретном введении микрообъемов анализируемого раствора в поток жидкого носителя с реагентом и последующего детектирования смеси тем или иным физико-химическим методом.

Деление аналитических методов на физические, химические и физико-химические весьма условно. Часто к физико-химическим методам анализа относят, например, ядерно-физические методы. В последнее время наметилась тенденция делить методы анализа на химические, физические и биологические - вовсе без физико-химических.

 


Дата добавления: 2015-08-09; просмотров: 303 | Нарушение авторских прав


Читайте в этой же книге: Гравиметрический анализ | Осаждение | Расчеты в гравиметрическом анализе |
<== предыдущая страница | следующая страница ==>
Расчеты в титриметрическом анализе| Задание

mybiblioteka.su - 2015-2024 год. (0.01 сек.)