Читайте также:
|
|
На практике необходимость оценки вероятностей отдельных значений, которую дает локальная теорема Муавра-Лапласа, возникает нечасто. Гораздо более важно оценивать вероятности событий, включающих в себя множество значений. Для этого используется интегральная теорема, которую можно сформулировать в следующем виде [1, гл. I, §6]:
при
где случайная величина имеет стандартное нормальное распределение и аппроксимирующая вероятность определяется по формуле
где — функция распределения стандартного нормального закона:
Есть ряд результатов, позволяющих оценить скорость сходимости. В [1, гл. I, §6] приводится следующий результат, являющийся частным случаем теоремы Берри-Эссеена:
где — функция распределения случайной величины На практике решение о том, насколько следует доверять нормальному приближению, принимают исходя из величины Чем она больше, тем меньше будет погрешность приближения.
Заметим, что асимптотический результат не изменится, если заменить строгие неравенства на нестрогие и наоборот. Предельная вероятность от такой замены также не поменяется, так как нормальное распределение абсолютно непрерывно и вероятность принять любое конкретное значение для него равна нулю. Однако исходная вероятность от такой замены может измениться, что вносит в формулу некоторую неоднозначность. Для больших значений изменение будет невелико, однако для небольших это может внести дополнительную погрешность.
Для устранения этой неоднозначности, а также повышения точности приближения рекомендуется задавать интересующие события в виде интервалов с полуцелыми границами. При этом приближение получается точнее. Это связано с тем интуитивно понятным соображением, что аппроксимация кусочно-постоянной функции (функции распределения биномиального закона) с помощью непрерывной функции дает более точные приближения между точками разрыва, чем в этих точках.
Пример
Пусть Оценим вероятность того, что число успехов будет отличаться от наиболее вероятного значения не более чем на . Заметим, что значение очень мало, поэтому применение нормального приближения здесь довольно ненадежно.
Точная вероятность рассматриваемого события равна
Применим нормальное приближение с той расстановкой неравенств, которая дана выше (снизу строгое, сверху нестрогое):
Ошибка приближения равна .
Теперь построим приближение, используя интервал с концами в полуцелых точках:
Ошибка приближения равна — примерно в 5 раз меньше, чем в предыдущем подходе.
Дата добавления: 2015-08-18; просмотров: 124 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Определение | | | Фноменология цветовосприятия |