Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Примеры решения задач. Пример 1. Космический корабль движется со скоростью υ=0,9 с по направлению к центру

Читайте также:
  1. Cдующая задача - вставка текста.
  2. Gt;Приведите примеры
  3. I Цели и задачи дисциплины
  4. I. Возможности пакета GeoScape и решаемые задачи.
  5. I. ЗАДАЧИ АРТИЛЛЕРИИ
  6. I. Необходимость этой задачи
  7. I. ОБЯЗАННОСТИ СОЛДАТА ПРИ ВЫПОЛНЕНИИ БОЕВОЙ ЗАДАЧИ В ТЫЛУ ПРОТИВНИКА

Пример 1. Космический корабль движется со скоростью υ=0,9 с по направлению к центру Земли. Какое расстояние l прой­дет этот корабль в системе отсчета, связанной с Землей (K-система), за интервал времени Δt0=1 с, отсчитанный по часам, находя­щимся в космическом корабле (K'-система)? Суточным вращением Земли и ее орбитальным движением вокруг Солнца пренебречь.

Решение. Расстояние l, которое пройдет космический ко­рабль в системе отсчета, связанной с Землей (K-система), определим по формуле

(1)
где —интервал времени, отсчитанный в K -системе отсчета.
Этот интервал времени связан с интервалом времени, отсчитан­
ным в K '-системе, соотношением Подставив
выражение в формулу (1), получим

После вычислений найдем

l =619 Мм.


Пример 2. В лабораторной системе отсчета (K -система) движется стержень со скоростью υ=0,8 с. По измерениям, произведенным в K -системе, его длина l оказалась равной 10 м, а угол φ, который он составляет с осью х, оказался равным 30°. Определить собственную длину l 0 стержня в K '-системе, связанной со стержнем, и угол φ0, который он составляет с осью х' (рис. 5. 2).


Рис. 5.2

 


 

Решение. Пусть в K '-системе стержень лежит в плоскости х'О'у'. Из рис. 5. 2, а следует, что собственная длина l 0 стержня и угол φ0, который он составляет с осью х', выразятся равенствами

(1)

В K -системе те же величины окажутся равными (рис. 5. 2, б)

(2)

Заметим, что при переходе от системы К.' к К размеры стержня в направлении оси у не изменятся, а в направлении оси х претерпят релятивистское (лоренцево) сокращение, т. е.

(3)

С учетом последних соотношений собственная длина стержня выразится равенством

или

Заменив в этом выражении на (рис. 5. 2, б), получим

Подставив значения величин в это выражение и произведя
вычисления, найдем

l 0=1 5 (3 м.

Для определения угла воспользуемся соотношениями (1), (2) и (3):

, или

откуда

Подставив значения φ и β в это выражение и произведя вычисле­ния, получим

Пример 3. Кинетическая энергия Т электрона равна 1 МэВ. Определить скорость электрона.

Решение. Релятивистская формула кинетической энергии

Выполнив относительно β преобразования, найдем скорость час­тицы, выраженную в долях скорости света (β = υ / c):

(1)

где E 0 — энергия покоя электрона (см. табл. 22).

Вычисления по этой формуле можно производить в любых еди­ницах энергии, так как наименования единиц в правой части формул сократятся и в результате подсчета будет получено отвлеченное число.

Подставив числовые значения Е 0и Т в мега электрон-вольтах, получим

β =0,941.
Так как , то

υ = 2,82-108 м/с.

Чтобы определить, является ли частица с кинетической энергией Т релятивистской или классической, достаточно сравнить кинети­ческую энергию частицы с ее энергией покоя.

Если , частицу можно считать классической. В этом
случае релятивистская формула (1) переходит в классическую:

, или

Пример 4. Определить релятивистский импульс р и кинетическую энергию Т электрона, движущегося со скоростью υ =0,9 с (где с — скорость света в вакууме).

Решение. Релятивистский импульс

(1)

После вычисления по формуле (1) получим

В релятивистской механике кинетическая энергия Т частицы определяется как разность между полной энергией E и энергией покоя Е 0этой частицы, т. е.

Так как и , то, учитывая зависимость массы от
скорости, получим

или окончательно

(2)

Сделав вычисления, найдем

T =106 фДж.

Во внесистемных единицах энергия покоя электрона m 0с2=0, 5 1 МэВ. Подставив это значение в формулу (2), получим

Т =0,66 МэВ.

Пример 5. Релятивистская частица с кинетической энергией T = т 0c2 (m 0 — масса покоя частицы) испытывает неупругое столк­новение с такой же покоящейся (в лабораторной системе отсчета) частицей. При этом образуется составная частица. Определить: 1) релятивистскую массу т движущейся частицы; 2) релятивистскую массу т' и массу покоя m0' составной частицы; 3) ее кинетическую энергию Т'.

Решение. 1. Релятивистскую массу m движущейся частицы
до столкновения найдем из выражения для кинетической энергии
релятивистской частицы . Так как , то m =
=2 т 0.

2. Для того чтобы найти релятивистскую массу составной части­цы, воспользуемся тем, что суммарная релятивистская масса частиц сохраняется *: m+m0=m', где т + т 0 — суммарная релятивистская масса частиц до столкновения; т' — релятивистская масса состав­ной частицы. Так как т—2т 0 , то

Массу покоя m 0 ' составной частицы найдем из соотношения

(1)
Скорость υ ' составной частицы (она совпадает со скоростью V cцентра масс в лабораторной системе отсчета) можно найти из закона сохранения импульса р=р', где р— импульс релятивистской частицы до столкновения; р' — импульс составной релятивистской частицы. Выразим р через кинетическую энергию Т:

Так как , то

Релятивистский импульс . Учитывая, что ,
закон сохранения импульса можно записать в виде ,
откуда

Подставив выражения υ' и т' в формулу (I), найдем массу покоя составной частицы:

, или

3. Кинетическую энергию Т' составной релятивистской частицы найдем как разность полной энергии т'с 2и энергии покоя т 0 2 составной частицы:

Подставив выражения т' и m 0', получим

· Этот закон см., например, в кн.: Савельев И. В. Куре общей физики.

М., 1977. Т. I, §70.

 

Задачи


Дата добавления: 2015-08-13; просмотров: 240 | Нарушение авторских прав


Читайте в этой же книге: Необхідність державного регулювання кризових ситуацій та значення держави в антикризовому управлінні | Аналітичний розділ | Діагностика ймовірності банкрутства підприємства ПАТ «Чернігівський молокозавод» з використанням тестових показників банкрутства | Пропозиційний розділ | ВИСНОВОК |
<== предыдущая страница | следующая страница ==>
Основные формулы| Релятивистское сложение скоростей

mybiblioteka.su - 2015-2024 год. (0.017 сек.)