Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Общая структура нечеткого микроконтроллера

Читайте также:
  1. I. Общая структура Ig
  2. I. Общая теория статистики
  3. I. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
  4. I. Общая часть
  5. I. Общая часть
  6. I. Общая часть.
  7. I.6.1. Общая характеристика информационного обеспечения деятельности прокуратуры.

Общая структура микроконтроллера, использующего нечеткую логику, показана на рис.1. Она содержит:

Блок фаззификации преобразует четкие величины, измеренные на выходе объекта управления, в нечеткие величины, которые описаны лингвистическими переменными в базе знаний.

Блок решений использует нечеткие условные (if - then) правила, заложенные в базу знаний, для преобразования нечетких входных данных в необходимые управляющие влияния, которые также носят нечеткий характер.

Блок дефаззификации превращает нечеткие данные с выхода блока решений в четкую величину, которая используется для управления объектом.

 

Нечеткий логический вывод

Основой для проведения операции нечеткого логического вывода является база правил, содержащая нечеткие высказывания в форме "Если-то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:

1. Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.

2. Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).

В противном случае имеет место неполная база нечетких правил.

Пусть в базе правил имеется m правил вида:
R1: ЕСЛИ x1 это A11 … И … xn это A1n, ТО y это B1

Ri: ЕСЛИ x1 это Ai1 … И … xn это Ain, ТО y это Bi

Rm: ЕСЛИ x1 это Ai1 … И … xn это Amn, ТО y это Bm,
где xk, k=1..n – входные переменные; y – выходная переменная; Aik – заданные нечеткие множества с функциями принадлежности.

Результатом нечеткого вывода является четкое значение переменной y* на основе заданных четких значений xk, k=1..n.

В общем случае механизм логического вывода включает четыре этапа: введение нечеткости (фазификация), нечеткий вывод, композиция и приведение к четкости, или дефазификация (см. рисунок 5).


Рисунок 5. Система нечеткого логического вывода.

Алгоритмы нечеткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечеткого вывода Мамдани, Сугено, Ларсена, Цукамото.

Рассмотрим подробнее нечеткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространенный способ логического вывода в нечетких системах. В нем используется минимаксная композиция нечетких множеств. Данный механизм включает в себя следующую последовательность действий.

1. Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как Aik(xk), i=1..m, k=1..n.

2. Нечеткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:


Далее находятся "усеченные" функции принадлежности:

3. Композиция, или объединение полученных усеченных функций, для чего используется максимальная композиция нечетких множеств:


где MF(y) – функция принадлежности итогового нечеткого множества.

4. Дефазификация, или приведение к четкости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:

.

Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рисунок 6 графически показывает процесс нечеткого вывода по Мамдани для двух входных переменных и двух нечетких правил R1 и R2.


Рисунок 6. Схема нечеткого вывода по Мамдани.

Интеграция с интеллектуальными парадигмами

Гибридизация методов интеллектуальной обработки информации – девиз, под которым прошли 90-е годы у западных и американских исследователей. В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления" (soft computing), который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечеткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.

Влияние нечеткой логики оказалось, пожалуй, самым обширным. Подобно тому, как нечеткие множества расширили рамки классической математическую теорию множеств, нечеткая логика "вторглась" практически в большинство методов Data Mining, наделив их новой функциональностью. Ниже приводятся наиболее интересные примеры таких объединений.


Дата добавления: 2015-08-13; просмотров: 74 | Нарушение авторских прав


Читайте в этой же книге: Определение | Наглядное представление операций над нечеткими множествами | О статистике нечетких множеств | Нечеткие множества как проекции случайных множеств |
<== предыдущая страница | следующая страница ==>
Высказывания на множестве значений фиксированной лингвистической переменной| АППРОКСИМАЦИИ ФУНКЦИИ

mybiblioteka.su - 2015-2025 год. (0.006 сек.)