Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Лекция 1.

Читайте также:
  1. Вводная лекция. Периодизация литературы XVIII в. (2 часа)
  2. Вопрос № 62. Особенности организации и методика проведения занятий по психологии (лекция, семинарские и практические занятия).
  3. Лекция - 3
  4. ЛЕКЦИЯ 1 - ГРАДОСТРОИТЕЛЬНАЯ ДЕЯТЕЛЬНОСТЬ
  5. Лекция 1 Клиническая психология как наука и область практики
  6. Лекция 1. История возникновения алкогольных напитков

Прогнозирование временных рядов

ПОСТАНОВКА ЗАДАЧИ ПРОГНОЗИРОВАНИЯ http://www.sernam.ru/book_boks1.php?id=1

Мы предложим методы построения, идентификации, подгонки и проверки моделей временных рядов и динамических систем. Эти методы будут удобны для дискретных систем с выборкой данных, т. е. таких систем, в которых возможность произвести наблюдение и предпринять регулирующие действия, возникает через равные интервалы времени.

Мы продемонстрируем использование этих моделей временных рядов и динамических систем в важных прикладных областях.

 

Один из важнейших целей анализа временных рядов является построение прогнозов ("Цитировать как: Цыплаков, Александр (2006) «Введение в прогнозирование в классических моделях временных рядов», Квантиль, №1, стр. 3-19. http://quantile.ru/01/01-Literacy.pdf).

Перечислим основные аспекты, влияющие па этот процесс:

- характер величин, которые прогнозируются;

- исходные данные для прогноза;

- статистическая модель, описывающая данные;

- метод, которым оценивается модель;

- цели, преследуемые при прогнозировании:

- характер прогноза (точечный, интервальный или плотностной);

- вид прогнозной функции.

 

 

Использование к моменту времени t наблюдений временного ряда для прогнозирования его значений в некоторый момент времени в будущем t+l может явиться основой для:

1. планирования в экономике и торговле;

2. планирования выпуска продукции;

3. складского контроля и контроля выпуска;

4. управления и оптимизации промышленных процессов.

 

Предполагается, что наблюдения доступны в дискретные (равноотстоящие?) моменты времени. Например, в проблеме прогнозирования сбыта сбыт zt в текущем месяце t и сбыт zt-1, zt-2, zt-3 в предыдущие месяцы могут быть использованы для прогноза сбыта с упреждением l=1,2,3,…12 месяцев. Обозначим через сделанный в момент t прогноз сбыта zt+l в некоторый момент t+l в будущем, т. е. с упреждением l.

 

 

Функция , l = 1, 2,… дающая в момент времени прогнозы для всех будущих времен упреждения, будет называться прогнозирующей функцией в момент времени t. Наша цель – получить такую прогнозирующую функцию, у которой среднее значение квадрата отклонения истинного от прогнозируемого значения является наименьшим для каждого упреждения l.

В дополнение к вычислению наилучшего прогноза необходимо также указать его точность, чтобы, например, можно было оценить риск, связанный с решениями, основанными на прогнозировании. Точность прогноза может быть выражена вероятностными пределами по обе стороны от каждого прогнозируемого значения, Эти пределы можно вычислить для любого удобного набора вероятностей, например для 50 и 90%. Смысл этих пределов в том, что значения временного ряда, которое появится в соответствующее время, с указанной вероятностью будет лежать внутри этих пределов. Для иллюстрации на рис. 1.1. показаны 20 последних значений временного ряда, обрывающегося на времени . Там же показаны прогнозируемые величины на момент для упреждений вместе с 50%-ными вероятностными пределами.


Дата добавления: 2015-08-03; просмотров: 164 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
E.3. Значения статистик Дарбина-Уотсона при 5%-ном уровне значимости| ДИСТАНЦИОННАЯ МОДЕЛЬ ДЛЯ РАЗЛИЧИЯ

mybiblioteka.su - 2015-2025 год. (0.006 сек.)