Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Математические ожидания функций дискретных случайных переменных

Читайте также:
  1. А.2.1.1.1. Структура функций
  2. А.2.1.2. Конфигурирование функций
  3. Базовый набор специальных функций управления и управленческих работ при выполнении СМР в аппарате генподрядчика
  4. ЗАДАЧА 17 Полное исследование функций и построение графика.
  5. И ПСИХИЧЕСКИХ ФУНКЦИЙ
  6. Изучение взаимодействия ситуационных факторов и личностных переменных и их относительный вклад в поведение
  7. Классификация элементарных функций

Пусть – некоторая функция от . Тогда – математическое ожидание записывается как

, (A.3)

где суммирование производится по всем возможным значениям . В табл. A.3 показана последовательность практического расчета математического ожидания функции от .

Таблица A.3

Вероятность Функция от Функция, взвешенная по вероятности
       
Всего

Предположим, что может принимать различных значений от до с соответствующими вероятностями от до . В первой колонке записываются все возможные значения . Во второй – записываются соответствующие вероятности. В третьей колонке рассчитываются значения функции для соответствующих величин . В четвертой колонке перемножаются числа из колонок 2 и 3. Ответ приводится в суммирующей строке колонки 4.

Рассчитаем математическое ожидание величины . Для этого рассмотрим пример с числами, выпадающими при бросании одной кости. Использовав схему, приведенную в табл. A.3, заполним табл. A.4.

Таблица A.4

       
  1/6   0,167
  1/6   0,667
  1/6   1,500
  1/6   2,667
  1/6   4,167
  1/6   6,000
Всего 15,167

В четвертой ее колонке даны шесть значений , взвешенных по соответствующим вероятностям, которые в данном примере все равняются 1/6. По определению, величина равна , она приведена как сумма в четвертой колонке и равна 15,167.

Математическое ожидание , как уже было показано, равно 3,5, и 3,5 в квадрате равно 12,25. Таким образом, величина не равна , и, следовательно, нужно аккуратно проводить различия между и .


Дата добавления: 2015-08-03; просмотров: 127 | Нарушение авторских прав


Читайте в этой же книге: Автокорреляция уровней временного ряда | Моделирование тенденции временного ряда | Моделирование сезонных колебаний | Автокорреляция в остатках. Критерий Дарбина-Уотсона | Дискретная случайная переменная | Теоретическая дисперсия дискретной случайной переменной | Вероятность в непрерывном случае | Постоянная и случайная составляющие случайной переменной | Способы оценивания и оценки | Оценки как случайные величины |
<== предыдущая страница | следующая страница ==>
Математическое ожидание дискретной случайной величины| Правила расчета математического ожидания

mybiblioteka.su - 2015-2024 год. (0.005 сек.)