Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Тонкие линзы.

Читайте также:
  1. Тонкие нити
  2. Ферменты поджелудочной железы расщепляют тонкие структуры.

Пусть – относительный коэффициент преломления и . Тогда из (5.36) и (5.47) следует выражение для фокусного расстояния линзы через относительный коэффициент преломления и её геометрические параметры:

(5.55)

Тонкой линзой называется линза, для которых можно пренебречь третьим слагаемым в скобках (5.55), что соответствует малости толщины линзы по сравнению с каждым радиусом кривизны:

(5.56)

Тонкая линза представляется не имеющей толщины и с ней совпадают обе главные плоскости. Фокусное расстояние становится равным отсчёту от линзы до фокуса. При этом условии матрица с коэффициентами Гаусса для тонкой линзы принимает вид:

(5.57) Величина называется оптической силой линзыю

Оптическая сила измеряется в диоптриях (1 дптр соответствует фокусному расстоянию в 1 м). Оптическая сила положительна для собирающих линз и отрицательна для рассеивающих.

Рассмотрим в качестве примера простейшую систему из двух тонких линз (рис. 5.5). Тогда матрица S (5.34), описывающая данную систему будет получаться из результата перемножения матриц:

(5.59)

Далее находятся постоянные Гаусса, а из них кардинальные элементы данной оптической системы. Отсчет для передних главной точки и фокуса идет от передней динзы, а для задних кардинальных точек – от последней линзы по приведенному выше правилу знаков.


Дата добавления: 2015-08-05; просмотров: 106 | Нарушение авторских прав


Читайте в этой же книге: Классическая электронная дисперсия | Нормальная дисперсия | Модулированные волны и волновые пакеты. Распространение волновых пакетов в диспергирующей среде. Групповая и фазовая скорость. Формула Рэлея. | Отражение и преломление света на границе двух диэлектриков. | Энергетические и фазовые соотношения при преломлении света на границе раздела двух сред. Явление Брюстера. | Явление Брюстера. | Полное внутреннее отражения. Примеры его проявления и использования. | Распространение света в проводящих средах. Комплексный показатель преломления. Отражение света от поверхности проводника. Глубина проникновения. Закон Бугера. | Геометрическая оптика как предельный случай волновой оптики. | Центрированные оптические системы. Параксиальное приближение. Кардинальные элементы оптической системы. |
<== предыдущая страница | следующая страница ==>
Построение изображений.| Построение изображения в толстой линзе.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)