|
(2.57) получаем:
(2.58)
Две плоские монохром. бегущие ЭМВ с одинаковой частотой, распростр. в одном и том же напр., в результате сложения дают плоскую монохроматическую ЭМВ той же частоты, распр. в том же направлении.
Биения. Рассмотрим случай, когда 1 2, E 1 || E 2:
(2.59)
В соответствии с принципом суперпозиции имеем: (2.60)
Мы получили незатухающую бегущую в сторону +Z немонохроматическую волну. Т.к. в оптическом диапазоне обычно | 1 – 2 | 1 + 2, то сомножитель в (2.60) является медленно меняющейся амплитудой ЭМВ с частотой (1 + 2) / 2 (см. рис.2.3). Гармонические колебания с медленно изменяющейся амплитудой называются биениями. Понятие «медленно изменяющаяся амплитуда» определяется относительно основного гармонического колебания: амплитуда мало меняется в течение многих периодов основного гармонического колебания. Частота = |1 – 2| называется частотой биений. Стоячие волны. Рассм. суперпозицию двух монохроматических волн с 1 = 2 =, E 10= E 20 = E 0, E 1 E 2 и распространяющихся навстречу друг другу:
(2.61)
где – разность фаз. Тогда
(2.62)
Сомножитель с точностью до знака можно рассматривать как амплитуду колебаний напряженности поля в заданной точке z. Она изменяется от точки к точке по гармоническому закону. Напряженность во всех точках изменяется с одинаковой частотой в одной фазе. Такая волна называется стоячей. В точках оси Z, где поле E = 0 (такие точки называются узлами). В точках оси Z, где поле E – максимально (такие точки называются пучностями). Расстояние между узлами (или пучностями) равняется половине длины бегущей волны – /2. Кроме того, колебания напряженности во всех точках стоячей волны в некоторый момент времени находятся в одной и той же фазе (например, E = 0 во всех z при ), тогда как колебания напряженности электрического поля в различных точках бегущей волны не совпадают по фазе.
Магнитная индукция в данном случае получается из суперпозиции магнитных индукций волн:
(2.63)
Суммарное поле отыщется в виде: (2.64)
Видно, что вектор B также образует стоячую волну, узлы которой совпадают с пучностями стоячей волны E (рис.2.4).П о времени колебаний электрического и магнитного полей стоячей ЭМВ отличаются по фазе на четверть периода колебаний. Это означает, что если E достигает максимума, то B = 0, если же E растет, то B уменьшается.
Преобразование энергии в стоячей волне. Т.к. , то поток энергии отсутствует в точках, где E = 0 или B = 0 (H = 0). Поток энергии через узлы и пучности в такой волне отсутствует. Поэтому с течением времени энергия движется между соседними узлами и пучностями, превращаясь из энергии магнитного поля в энергию электрического поля и наоборот, а пользуясь формулой для объемной плотности энергии электромагнитного поля
(2.65)
можно сказать, что энергия стоячей волны, заключенная между соседними узлами и пучностями, остается постоянной с течением времени.
6 Поляризация электромагнитных волн. Поляризация света – это физическая характеристика оптического излучения, описывающая поперечную анизотропию световых волн, т.е. неэквивалентность различных направлений в плоскости, перпендикулярной направлению распространения волн.
Световые волны, у которых направления колебаний векторов электрического и магнитного полей сохраняются неизменными в пространстве или изменяются по определенному закону называются поляризованными.
Если вектор световой волны колеблются лишь в одной неизменной в пространстве плоскости, то такая волна называется линейно или плоско поляризованной. При линейной поляризации плоскость содержащая волновой вектор и называется плоскость поляризации волны.
Если колебания вектора совершаются так, что конец описывает окружность в плоскости, перпендикулярно направленно распространенной волны , то такая волна называется поляризованной по кругу если эллипс, то эллиптически поляризованной.
Световая волна в которой различные направления вектора в поперечной к направлению распространения волны плоскости равновероятны, называется естественной (естественно поляризованной или неполяризованной).
Закон Малюса I()=Iocos2
Виды поляризации:
· Электронная поляризация - смещение электронного облака относительно центра ядра атома или иона в результате чего возникает электрический момент, исчезающий после окончания действия электрического поля. Наблюдается во всех без исключения диэлектриках. Единственным видом поляризации она является в неполярных диэлектриках.
· Ионная поляризация - наблюдается в веществах с ионной химической связью и проявляется в смещении друг относительно друга разноименно заряженных ионов. Как указывалось, время электронной поляризации весьма мало - на 2 - 3 порядка больше ионной поляризации.
· Релаксационные (замедленные) виды поляризации - проявляются в газах, жидкостях и твердых диэлектриках в том случае, если они состоят из полярных молекул, диполей или молекул, имеющих отдельные радикалы или части (сегменты), обладающие собственными электрическими моментами:
· Ионно – релаксационная поляризация - наблюдается в диэлектриках с ионным типом химических связей, например в неорганических стеклах, имеющих неплотную упаковку ионов, электротехническом фарфоре и других.
· Миграционная поляризация наблюдается в неоднородных диэлектриках, имеющих проводящие и полупроводящие включения, слои с различной проводимостью и т.п.
· Электронно-релаксационная поляризация характерна для твердых диэлектриков, содержащих дефекты или примесные ионы, способные захватывать электроны.
· Спонтанная поляризация
Число независимых поляризаций. Электромагнитная волна с любой поляризацией может быть представлена в идее суперпозиции двух линейно поляризованных волн, плоскости колебаний электрического вектора которых взаимно перпендикулярны.
Рассмотрим такую суперпозицию с одинаковыми частотами w, амплитудами электрических полей и распространяющихся в одном направлении (вдоль оси z декартовой системы координат) со сдвигом фаз . Пусть вектор колеблется в плоскости xz, а вектор в плоскости yz
E1y=E1z=0 E2x=E2z=0
- состояние поляризации суммарного поля в общем виде
7. Волна с круговой или эллиптической поляризацией как суперпозиция волн с линейными поляризациями и линейно поляризованная волна как суперпозиция волн с круговой поляризацией.
Основные случаи поляризации:
1. =0
– эллиптическая поляризация
Если при наблюдении навстречу волне вращения вектора в фиксированной плоскости (перпендикулярна волновому вектору) происходит по часовой стрелке, то такая волна называется правой эллиптически поляризованной волной, если против часовой левой.
=0
эллипс вырождается в окружность. Такая поляризация называется круговой или циркулярной. Понятия правой и левой круговой поляризации применимы здесь аналогично определенным выше для эллиптической поляризации.
3. 0 (общий случай)
Главные оси эллипса не совпадают с осями координат. Ориентация зависит от сдвига фаз . Эллиптичность поляризаций
4. Линейная поляризация =0
Конец суммарного вектора электрического поля движется вдоль соответствующего отрезка прямой. Получаемая линейно поляризованная волнаявляется предельным случаем эллиптически поляризованной волны. Видно, что световая волна с любой поляризацией может быть представлена в виде суперпозиции двух линейно поляризованных во взаимно-перпендикулярных плоскостях волн. Поэтому можно сказать, что электромагнитные волны обладают двумя независимыми состояниями поляризации.
Рассмотрим противоположный случай – суперпозицию волн с левой и правой круговыми поляризациями. Пусть при некоторой фиксированной координате z заданы компоненты их полей E 1 (левая) и E 2 (правая):
; ;
;
В результате их суперпозиции получается линейно поляризованная волна с Ex=E1x+E2x=2Eocos wt Ey=E1y+E2y=0 Если между двумя круговыми волнами есть сдвиг фаз, то результирующий вектор линейно поляризованной волны будет колебаться в плоскости, расположенной под некоторым углом к оси X.
Дата добавления: 2015-08-05; просмотров: 55 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ТЕХНОЛОГИЯ ПУСКОНАЛАДОЧНЫХ РАБОТ | | | Классическая электронная дисперсия |