Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Конструирование функций передачи фильтров

Читайте также:
  1. А.2.1.1.1. Структура функций
  2. А.2.1.2. Конфигурирование функций
  3. Базовый набор специальных функций управления и управленческих работ при выполнении СМР в аппарате генподрядчика
  4. ЗАДАЧА 17 Полное исследование функций и построение графика.
  5. И ПСИХИЧЕСКИХ ФУНКЦИЙ
  6. Кадры из передачи «Независимое расследование».
  7. Кадры из телепередачи «Независимое расследование».

На начальном этапе синтеза фильтра решается задача аппроксимации его амплитудно-частотной характеристики, заданной в виде требований к рабочим параметрам и, реже, к форме АЧХ. Решением задачи аппроксимации является функция передачи некоторой цепи минимального порядка, удов­летворяющей заданным требованиям и условиям физической реализуемости. Передаточные функции могут конструироваться как аналитическим, так и численными методами в зависимости от наличия или отсутствия дополнительных требований к форме АЧХ, например таких, как многополосность или ограниченность полосы (полос) пропускания (режекции), что отличает эти АЧХ от стандартных, показанных на рис. 1.1. При наличии дополнительных требований к форме АЧХ используются численные методы, обладающие б о льшими воз­мож­ностями, а при их отсутствии (на практике это наиболее часто встре­чающийся случай) – аналитический метод.

При использовании аналитического метода задача аппроксимации решается не для конкретного типа фильтра, а для некоторого ФНЧ-прототипа, переход к которому осуществляется путем частотного преобразования вида

где – текущая частота АЧХ реального фильтра; – текущая нормированная частота АЧХ ФНЧ-прототипа; – центральная частота ПФ (РФ); – относительная ширина полосы пропускания ПФ (РФ).

При переходе к ФНЧ-прототипу от полосового или режекторного фильтра предполагается, что у последних амплитудно-частотная характеристика симметрична в геометрическом смысле, т.е. у такой характеристики любая пара частот и , на которых коэффициенты передачи одинаковы, подчиняется закону (на практике тип симметрии АЧХ часто не имеет значения, поэтому выбирается геометрическая симметрия, при которой получается более простая реализация).

В результате указанного частотного преобразования АЧХ любого типа фильтра (см. рис. 1.1) приводится к нормированной АЧХ, показанной на рис. 1.2, где ; . При этом как форма АЧХ (колебательная или монотонная), так и значения параметров исходного фильтра не изменяются. Чтобы решить задачу аппроксимации, математическое выражение АЧХ ФНЧ-прототипа записывается в такой форме:

, (1.1)

где – аппроксимирующая функция n -го порядка (полином или дробь), нормированная таким образом, чтобы на частоте она равнялась единице, т.е. ; – параметр, характеризующий неравномерность АЧХ на границе полосы пропускания: .

В качестве используются специальные функции, наилучшим образом приближающиеся к нулю на интервале и резко возрастающие (по модулю) вне этого интервала, что важно, поскольку такие свойства определяют высокую селективность синтезируемого фильтра. Среди полиномиальных функций этим требованиям в наибольшей степени отвечает полином Чебышева

при , при ,

а среди дробных функций – дробь Золотарева, являющаяся наилучшей по критерию селективности. Дробь Золотарева – это частный случай дроби Чебышева

, (1.2)

,

полюсы которой выбраны из условия изоэкстремальности характеристики дроби в диапазоне переменной ( при n четном, при n нечетном). Оптимальные в этом смысле значения полюсов обычно вычисляются через эллиптические функции Якоби, однако их мож­но определить и методом последовательных приближений. В последнем случае процедура отыскания выглядит следующим образом: вначале задаются большие значения и вычисляются нули функции (1.2), затем принимается и вновь определяются нули функции (1.2), и так до тех пор, пока последующие значения не будут отличаться от предыдущих на величину допустимой ошибки. У фильтров с аппроксимацией дробью Золотарева (фильтров Золотарева–Кауэра) амплитудно-частотная характеристика является равноволновой как в полосе пропускания, так и в полосе режекции, а у фильтров с аппроксимацией полиномом Чебышева (фильтров Чебышева) – равноволновой в полосе пропускания и монотонной в полосе режекции.

При четном порядке n фильтра Золотарева асимптотическое значение его коэффициента передачи при не стремится к нулю, что является недостатком такой аппроксимации и объясняется наличием у дроби Золотарева полного набора конечных полюсов ( при i= 1, 2, …, n /2). Поэтому с целью уменьшения на единицу числа полюсов функции (1.2), т.е. числа нулей функции (1.1), используется преобразование вида

,

где – новое и прежнее значения полюса дроби Золотарева (при этом ); – прежний первый (наибольший) полюс дроби Золотарева. Чтобы сохранить равноволновый характер АЧХ в полосе пропускания и полосе режекции, необходимо преобразовать и нули функции (1.2):

.

Фильтры с меньшим на единицу числом нулей передачи, в отличие от фильтров типа a с аппроксимацией (1.2), классифицируются как фильтры типа b. Последующие преобразования полюсов и нулей дроби Чебышева четного порядка

,

позволяют перейти к фильтрам типа c, которые характеризуются меньшим на единицу числом максимумов АЧХ в полосе пропускания. В этих выражениях – прежняя наименьшая частота нуля дроби Чебышева.

В результате решения задачи аппроксимации становятся известными порядок фильтра n, а также значения корней полиномов числителя и знаменателя передаточной функции ФНЧ-прототипа

, (1.3)

где ; – степень (четная) полинома числителя (при полиномиальной аппроксимации ); n – степень полинома знаменателя, являющегося полиномом Гурвица; при n четном, при n нечетном. Степень полинома числителя определяет число нулей передачи, а степень полинома знаменателя – число экстремумов АЧХ в полосе пропускания (при равноволновом характере АЧХ). Для перехода от функции передачи ФНЧ-прототипа (1.3) к функции передачи реального фильтра используется соответствующее стандартное частотное преобразование

(1.4)

где – мнимая частота.

Значения корней полиномов числителя и знаменателя функции при различных аппроксимирующих функциях табулированы и приведены в справочниках по расчету фильтров. При конструировании активных RC -фильтров после этапа аппроксимации АЧХ проводится этап синтеза структурной и (или) принципиальной схемы фильтра одним из известных методов, к числу которых, прежде всего, относятся методы имитации лестничных LC- фильтров и метод матричных преобразований (здесь не рассматриваются каскадные фильтры, поскольку их параметрическая чувствительность в несколько раз и даже в десятки раз хуже чувствительности фильтров, синтезированных указанными методами).


Дата добавления: 2015-08-03; просмотров: 95 | Нарушение авторских прав


Читайте в этой же книге: Синтез лестничных LC-фильтров | Конверторные фильтры нижних и верхних частот | Полосовые конверторные фильтры | Этапы проектирования и исследования фильтров | Сравнительная оценка свойств различных схем ФНЧ | Конверторный ФНЧ со схемой типа В | ТАБЛИЦЫ |
<== предыдущая страница | следующая страница ==>
Характеристики и параметры фильтров| Синтез базовой матрицы низкочувствительных фильтров

mybiblioteka.su - 2015-2024 год. (0.008 сек.)